上海理工大学学报  2019, Vol. 41 Issue (3): 205-213   PDF    
组合KdV-Burgers方程扭状孤波解的渐近稳定性
邓升尔, 张卫国     
上海理工大学 理学院,上海 200093
摘要: 对组合KdV-Burgers方程单调递减扭状孤波解的渐近稳定性进行了研究。首先推导出该扭状孤波解的一阶、二阶导数的估计,然后再利用 ${L^2}$ 能量估计方法和Young不等式,解决了方程中非线性项难以估计的问题,证明了该单调递减扭状孤波解在 ${H^1}$ 中是渐近稳定的。进一步利用 ${L^2}$ 估计方法和Gargliado-Nirenberg不等式,得到了扰动 $\psi $ ${L^2}$ ${L^\infty }$ 范数意义下的衰减速率分别为 ${\left( {1 + t} \right)^{ - 1/2}}$ ${\left( {1 + t} \right)^{ - 1/4}}$
关键词: 组合KdV-Burgers方程     渐近稳定性     先验估计     衰减速率    
Asymptotic Stability of Kink Profile Wave Solutions of the Compound KdV-Burgers Equation
DENG Shenger, ZHANG Weiguo     
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract: The asymptotic stability of monotone decreasing kink profile solitary wave solutions of the compound KdV-Burgers equation was studied. The estimate of the first-order and second-order derivatives of monotone decreasing kink profile solitary wave solutions was obtained and the difficulties caused by nonlinear terms in the compound KdV-Burgers equation in the estimation were overcome by using the ${L^2}$ energy estimate method and Young’s inequality. It is proved that the monotone decreasing kink profile solitary wave solution is asymptotically stable in ${H^1}$ . Moreover, the decay rates of $\psi $ in the sense of ${L^2}$ and ${L^\infty }$ norm respectively are ${\left( {1 + t} \right)^{ - 1/2}}$ and ${\left( {1 + t} \right)^{ - 1/4}}$ by using the ${L^2}$ estimate method and Gargliado-Nirenberg inequality.
Key words: compound KdV-Burgers equation     asymptotic stability     priori estimate     decay rate    
1 问题的提出

组合KdV-Burgers方程

$\;\;\quad {u_t} + g{(u)_x} + r{u_{xx}} + \beta {u_{xxx}} = 0,\;\;\;b > 0,r \leqslant 0,\beta > 0\!\!\!\!\!\!\!\!\!\!$ (1)

是非线性研究领域重要的模型方程,在等离子体物理、量子场理论以及固态物理中有着广泛的应用[1-6]。其中, $g(u) = \dfrac{a}{2}{u^2} + \dfrac{b}{3}{u^3}$ $a$ $b$ 是非线性项系数。当 $a$ $b$ $r$ 给定一些值时,方程(1)可以改写成其他著名的非线性方程。例如,当 $a \ne 0,$ $b = 0,r \ne 0$ ,方程(1)即为人们熟知的KdV-Burgers方程

${u_t} + au{u_x} + r{u_{xx}} + \beta {u_{xxx}} = 0$ (2)

方程(2)可作为许多具有某种耗散作用的实际问题的控制方程,如粘性液体中的浅水波、弹性管内液体的流动和波动、等离子体中的磁声波等。当方程(2)中 $b = 0,r = 0$ ,则为著名的KdV方程

${u_t} + au{u_x} + \beta {u_{xxx}} = 0$

文献[7-10]研究了方程(1)孤波解的求解问题,在文献[7]中求出了方程(1)的扭状孤波解;文献[8-9]分别运用齐次平衡法和直接法与假设法的一种结合得到了方程(1)的精确解;随后,文献[10]应用Liapunov稳定性分析法证明了广义组合KdV-Burgers方程的扭状孤波解是线性稳定的,并得到了孤波解线性稳定的条件。文献[11]研究了组合KdV-Burgers方程(1)行波解与耗散系数 $\alpha $ 的关系,找到了2个临界值, ${\lambda _0} = - 2\beta \sqrt {\bar b(3x_3^2 + p)} $ ${\lambda _1} = - 2\beta \sqrt {\bar b(3x_1^2 + p)} $ $ {x_1} < {x_2}< {x_3}$ ,分别为 $ {x^3} + px +$ $ q = 0$ 的3个实根, $\bar b = \dfrac{b}{{3\beta }}$ $p = - \dfrac{{12vb + 3{a^2}}}{{4{b^2}}}$ $q = $ $ \dfrac{{{a^3} + 6abv - 12{b^2}c}}{{4{b^3}}}$ ,并给出了引理1。

引理1  假设波速 $v$ 与积分常数 $c$ 满足 ${\left(\dfrac{q}{2}\right)^2} + $ $ {\left(\dfrac{p}{3}\right)^3} < 0$ ${a^2} + 4vb > 0$ 时,有:

a. 当 $r \leqslant {\lambda _0}$ 时,方程(1)有单调递减的扭状孤波解;当 ${\lambda _0} < r < 0$ 时,有振荡行波解,且 $U(\xi )$ 满足 $u( - \infty ) = {x_3} - \dfrac{a}{{2b}}$ $u( + \infty ) = {x_2} - \dfrac{a}{{2b}}$

b. 当 $r \leqslant {\lambda _1}$ 时,方程(1)有单调递增的扭状孤波解;当 ${\lambda _1} < r < 0$ 时,有振荡行波解,且 $U(\xi )$ 满足 $u( - \infty ) = {x_1} - \dfrac{a}{{2b}}$ $u( + \infty ) = {x_2} - \dfrac{a}{{2b}}$

c. 当 ${\lambda _0} < r < {\lambda _1}$ 时,方程(1)既有单调递增的扭状孤波解,满足 $u( - \infty ) = {x_1} - \dfrac{a}{{2b}}$ $u( + \infty ) = {x_2} - \dfrac{a}{{2b}}$ ,又有振荡行波解,满足 $u( - \infty ) = {x_3} - \dfrac{a}{{2b}}$ $u( + \infty ) = {x_2} - \dfrac{a}{{2b}}$

文献[11]利用平面动力系统的理论和方法研究了方程(1)的行波解。对于引理1中涉及的方程(1)的衰减振荡解,文献[11]利用解轨线在相图中的演化关系、假设待定法,求出了方程(1)衰减震荡解的近似解,进一步得到了近似解与真解间的误差估计,证明了误差是以指数形式速降的无穷小量。对于引理1中方程(1)所具有的波形函数为单调的行波解(也可称为扭状孤波解),目前尚未发现有对它的稳定性研究的文献发表。本文研究当 $\alpha \leqslant {\lambda _0}$ 时方程所有的单调递减行波解的渐近稳定性。

2 方程(1)单调递减扭状孤波解的基本性质

假定 $U(\xi )$ 是引理1中所述的方程(1)在 $r \leqslant {\lambda _0}$ (令 $r = - \alpha $ $\alpha \geqslant 0$ )情形单调递减的行波解(或称扭状孤波解),记

$U(\xi ) \to {u_ \pm },\quad\xi \to \pm \infty $

${u_ - } = {x_3} - \dfrac{a}{{2b}}$ ${u_ + } = {x_2} - \dfrac{a}{{2b}}$

$u(t,x) = U(\xi ) - \dfrac{a}{{2b}},\;\xi = x - ct$ ,代入方程(1),则 $U(\xi )$ 满足

$ \qquad\qquad\quad- c{U_\xi } - \alpha {U_{\xi \xi }} + \beta {U_{\xi \xi \xi }} + g{(U)_\xi } = 0$ (3)

将式(3)对 $\xi $ 积分,化为

$\begin{split} - \alpha {U_\xi } + \beta {U_{\xi \xi }} = cU - g(U) + a \\ a = - c{u_ \pm } + g({u_ \pm }) \qquad\!\! \end{split} $

性质1  假设 $U(\xi )$ 是单调递减行波解, $c$ 是波速,那么,Rankine-Hugoniot条件成立:

$c({u_ + } - {u_ - }) = g({u_ + }) - g({u_ - })$

性质2  假设 $U(\xi )$ 是单调递减行波解, $c$ 是波速,那么,满足Lax-shock条件:

$g'({u_ + }) < c < g'({u_ - })$

性质3  假设 $U(\xi )$ 是方程(2)的行波解, $U(\xi )$ 是单调递减的,并且 ${u_ \pm }$ 是单调行波解的渐近值,有 $U\left( \xi \right) \to {u_ \pm },\; {\xi \to \pm \infty }$ 。则存在常数 $C$ ,使得对于任意的 $\xi \in R$ 时,有

$\left| {{U_\xi }} \right|,\left| {{U_{\xi \xi }}} \right| \leqslant C\left| {{u_ - } - {u_ + }} \right|$

证明  因为, $U\left( \xi \right)$ 是单调递减的,所以, ${U_\xi } \leqslant 0$ ${u_ + } < {u_ - }$ $U - {u_ + } > 0$ 。将式(3)对 $\xi $ $(\xi , + \infty )$ 进行积分,可得

$\qquad 0 - \alpha {U_\xi } + \beta {U_{\xi \xi }} = g(U) - g({u_ + }) - c(U - {u_ + })$ (4)

利用积分中值定理,将式(4)化为

$\begin{gathered} - \alpha {U_\xi } + \beta {U_{\xi \xi }} = g'(\theta (U - {u_ + }))(U - {u_ + }) - c(U - {u_ + })= \\ \;\;\;\;\; (g'(\theta (U - {u_ + })) - c)(U - {u_ + }),\begin{array}{*{20}{c}} {}&{0 < \theta < 1} \end{array} \\ \end{gathered} $

a. 当 $g'(\theta (U - {u_ + }) )> c$ 时,有

$ - \alpha {U_\xi } + \beta {U_{\xi \xi }} > 0$
$ - c(U - {u_ + }) \leqslant - \alpha {U_\xi } + \beta {U_{\xi \xi }} \leqslant g(U) - g({u_ + })$

故存在常数 $C$ ,满足

$\qquad\quad - C\left| {{u_ - } - {u_ + }} \right| \leqslant - \alpha {U_\xi } + \beta {U_{\xi \xi }} \leqslant C\left| {{u_ - } - {u_ + }} \right|$ (5)

将式(5)两边同乘以 ${{\rm e}^{ - \frac{\alpha }{\beta }\xi }}$ ,有

$ \begin{split} - C{{\rm e}^{ - \frac{\alpha }{\beta }\xi }}\left| {{u_ - } - {u_ + }} \right| \leqslant \beta \frac{\rm d}{{{\rm d}\xi }}({{\rm e}^{ - \frac{\alpha }{\beta }\xi }}{U_\xi }) \leqslant \\ C{{\rm e}^{ - \frac{\alpha }{\beta }\xi }}\left| {{u_ - } - {u_ + }} \right|\qquad\qquad\end{split}$ (6)

将式(6)对 $\xi $ $(\xi , + \infty )$ 上积分,可得

$\left| {{U_\xi }} \right| \leqslant C\left| {{u_ - } - {u_ + }} \right|$

b. 当 $g'(\theta (U - {u_ + }) )< c$ 时,有

$\begin{array}{c} - \alpha {U_\xi } + \beta {U_{\xi \xi }} < 0\\ - c(U - {u_ + }) \leqslant - \alpha {U_\xi } + \beta {U_{\xi \xi }} \leqslant U - {u_ + }\end{array} $

故存在常数 $C$ ,满足

$\qquad\quad - C\left| {{u_ - } - {u_ + }} \right| \leqslant - \alpha {U_\xi } + \beta {U_{\xi \xi }} \leqslant C\left| {{u_ - } - {u_ + }} \right|$ (7)

将式(7)两边同乘以 ${{\rm e}^{ - \frac{r}{\beta }\xi }}$ ,有

$\begin{split} - C{{\rm e}^{ - \frac{r}{\beta }\xi }}\left| {{u_ - } - {u_ + }} \right| \leqslant \beta \frac{{\rm d}}{{{\rm d}\xi }}({{\rm e}^{ - \frac{r}{\beta }\xi }}{U_\xi }) \leqslant \\ C{{\rm e}^{ - \frac{r}{\beta }\xi }}\left| {{u_ - } - {u_ + }} \right|\qquad\quad\end{split}$ (8)

将式(8)对 $\xi $ $(\xi , + \infty )$ 上积分,可得

$\left| {{U_\xi }} \right| \leqslant C\left| {{u_ - } - {u_ + }} \right|$ (9)

同理,利用微分中值定理以及式(9),可得

$\left| {{U_{\xi \xi }}} \right| \leqslant C\left| {{u_ - } - {u_ + }} \right|$

故性质3得证。

3 单调递减扭状孤波解的渐近稳定性定理

考虑方程(1)的初值问题,初值条件为

$u(0,x) = {u_0}(x)$ (10)

这里 ${u_0}$ 是有界可测函数,满足

${u_0}(x) \to {u_ \pm },\;\;x \to \pm \infty $

$U$ 为行波解,假定

${u_0} - U \in {H^1}$ (11)

并且对任意 $x \in \mathbb{R}$ ,有

$\qquad\qquad\quad\left\{ \begin{array}{l} {\varPhi _0}(x) = \displaystyle\int_{ - \infty }^x {\left( {{u_0} - U} \right)} (y){\rm d}y \\ {\varPhi _0} \in {L^2} \\ \end{array} \right.$ (12)

由条件式(11)和式(12)可知,

${\varPhi _0}(x) = \int_{ - \infty }^{ + \infty } {\left( {{u_0} - U} \right)} (y){\rm d}y = 0$

定理1(渐近稳定性定理) 设 $U(\xi )$ $(\xi = x - ct)$ 是方程(1)在 $r \leqslant {\lambda _0}$ 情形单调递减的扭状孤波解,初值 ${u_0}$ 满足式(11)和式(12),记

${N_0} = {\left\| {{u_0} - U} \right\|_{{H^1}}} + {\left\| {{\varPhi _0}} \right\|_{{H^2}}}$

则存在与 ${u_ \pm }$ 无关的常数 ${\delta _1}$ ${\gamma _1}( \gamma_1\leqslant \left| {{u_ - } - {u_ + }} \right|)$ ,使得当 $\left| {{u_ - } - {u_ + }} \right| \leqslant {\delta _1}$ ${N_0} \leqslant {\gamma _1}$ 时,方程(1)带有初值 ${u_0}(x)$ 的初值问题的解 $u(t,x)$ 是全局唯一存在的,且有

$\qquad\qquad u - U \in {C^0}(0,\infty ;{H^1}) \cap {L^2}(0,\infty ;{H^2})$ (13)

进一步,该解以最大范数的形式趋近于行波解

$\qquad\qquad\underset{x\in \mathbb{R}}{\mathop{\text{sup}}}\,\left| u(t,x)-U(x-ct) \right|\to 0,\;\; t\to \infty $ (14)

定理1的证明可以分为两部分:第一部分是证明解的整体存在性;第二部分则是证明解的渐近稳定性。

$u(t,x) = U(\xi ) + \psi (t,\xi ),\xi = x - ct$ 代入方程(1),则 $\psi (t,\xi )$ 满足

${\psi _t} - c{\psi _\xi } - \alpha {\psi _{\xi \xi }} + \beta {\psi _{\xi \xi \xi }} + {({{g}}(U + \psi ) - g(U))_\xi } = 0$ (15)
$\psi (0,\xi ) = {\psi _0}(\xi ) = ({u_0} - U)(\xi )$ (16)

于是,问题(14)就化为证明 $\underset{t\to 0}{\mathop{\text{lim}}}\,\underset{x\in \mathbb{R}}{\mathop{\text{sup}}}\;\left| \psi (t,\xi ) \right|\to 0$

$\psi = {\varPhi _\xi }$ ,代入式(15),则式(15)化为

$\begin{split}&{\varPhi _{t\xi }} - c{\varPhi _{\xi \xi }} - \alpha {\varPhi _{\xi \xi \xi }} + \\ &\qquad\beta {\varPhi _{\xi \xi \xi \xi }} + {({{g}}(U + {\varPhi _\xi }) - g(U))_\xi } = 0\end{split}$ (17)

将式(17)对 $\xi $ 进行积分,并令积分常数为0,则式(17)可化为

$\begin{split}&{\varPhi _t} - c{\varPhi _\xi } - \alpha {\varPhi _{\xi \xi }} + \beta {\varPhi _{\xi \xi \xi }} +\\ &\qquad{({{g}}(U + {\varPhi _\xi }) - g(U))} = 0\end{split}$ (18)

将式(18)线性化,则式(18)化为

${\varPhi _t} - c{\varPhi _\xi } - \alpha {\varPhi _{\xi \xi }} + \beta {\varPhi _{\xi \xi \xi }} + g'(U){\varPhi _\xi } = F(U,{\varPhi _\xi })$ (19)

其中,

$F(U,{\varPhi _\xi }) = - ({{g}}(U + {\varPhi _\xi }) - g(U)) + g'(U){\varPhi _\xi}$

而原初值 ${\psi _0}(\xi )$ (式(16))就随之化为

$\varPhi(0,\xi ) = {\varPhi _0}(\xi )$ (20)

定义初值问题式(18)和式(20)的解空间为

$X(0,T) = \left\{ {\varPhi \in {L^\infty }(0,T;{H^2}),{\varPhi _\xi } \in {L^2}(0,T;{H^2})} \right\}$

于是,有定理2。

定理2 假设 ${\varPhi _0} \in {H^2}$ ,则存在与 ${u_ \pm }$ 无关的常数 ${\delta _2}$ ${\gamma _2}( {\gamma _2}\leqslant \left| {{u_ - } - {u_ + }} \right|)$ ${C_1}$ ,使得当 $\left| {{u_ - } - {u_ + }} \right| \leqslant {\delta _2}$ ${N_0} = $ ${\left\| {{\varPhi _0}} \right\|_{{H^2}}} + {\left\| {{\psi _0}} \right\|_{{H^1}}} \leqslant {\gamma _2}$ 时,初值问题式(18)和式(20)的解 $\varPhi$ $X\left( {0,\infty } \right)$ 中是全局唯一存在的,且对 $\forall t \in [0,\infty )$ ,满足

$\begin{split}&\left\| \varPhi \right\|_{{H^2}}^2 + \left\| \psi \right\|_{{H^1}}^2 +\\ &\quad\int_{0}^{t}{\left( {{\left\| \sqrt{\left| {{U}_{\xi }} \right|}\varPhi \right\|}^{2}}+{{\left\| {{\varPhi}_{\xi }} \right\|}^{2}}+{{\left\| {{\psi }_{\xi }} \right\|}^{2}}+{{\left\| {{\psi }_{\xi \xi }} \right\|}^{2}} \right)}{\rm d}\tau \leqslant \!\!\!\!\!\!\!\!\!\!\\ &\quad\quad{C_1}N_0^2\end{split}$ (21)

其中, ${\psi }$ 由式(15)所定义, ${\psi _0}$ 为其初值。

实际上,定理2中的 $\psi $ 是初值问题式(15)和式(16)的全局解,其解空间是定理1中 ${C^0}(0,\infty ;{H^1}) \cap $ $ {L^2}(0,\infty ;{H^2})$ 。故当定理2得证时,方程(1)带有初值式(10)的初值问题存在唯一全局解,则定理1的第一部分得证。

对于定理2的证明也可以分为两个部分:第一部分证明初值问题式(18)和式(20)解的局部存在性;第二部分证明解的全局存在性。对于初值问题式(18)和式(20)解的局部存在性的证明,可运用Galerkin方法按标准方式进行证明,可参考文献[12-13]等。本文省略证明而给出定理3。

定理3(局部存在性) 假设 ${\varPhi _0} \in {H^2}$ ${\left\| {{\varPhi _0}} \right\|_{{H^1}}} \leqslant $ $ {\gamma _0}/2$ ,则存在正常数 ${T_0}({\gamma _0})$ ,使得初值问题式(18)和式(20)有唯一解 $\varPhi \in X(0,{T_0})$ ,满足

$\left\| \varPhi \right\|_{{H^2}}^2 \leqslant K\left\| {{\varPhi _0}} \right\|_{{H^2}}^2$ (22)

对于定理2中的初值问题式(18)和式(20)的全局存在性及不等式(21),需要在局部解存在的基础上给出一致先验估计。

引理2(Young不等式[14])  a. 令 $a > 0$ $b > 0$ ,且 $\dfrac{1}{p} + \dfrac{1}{q} = 1$ $p > 1,\;\;q < + \infty $ ,则有下列不等式成立:

$ab \leqslant \theta {a^p} + C(\theta ){b^q}$

其中, $\theta $ 是大于零的任意常数,且 $C(\theta ) = \dfrac{1}{q}{(\theta p)^{ - \frac{q}{p}}}$

b. 如果 $\dfrac{1}{p} + \dfrac{1}{q} = 1$ $p > 1$ $q < + \infty $ ,且满足 $u \in {L^p}$ $v \in {L^p}$ ,那么,

$\int_\varOmega {\left| {u(x)v(x)} \right|{\rm d}x} \leqslant \frac{1}{p}\left\| {u(x)} \right\|_p^p + \frac{1}{q}\left\| {v(x)} \right\|_q^q$

命题1(先验估计) 假设 $\varPhi \in X(0,T),T > 0$ ,是初值问题式(18)和式(20)的解。令

$N(t) = \mathop {\sup }\limits_{0 \leqslant \tau \leqslant t} \{ {\left\| {\varPhi(\tau )} \right\|_{{H^2}}} + {\left\| {\psi (\tau )} \right\|_{{H^1}}}\} $

其中, $t \in [0,T]$ ,则存在与 ${u_ \pm }$ 无关的常数 ${\delta _3}$ ${\gamma _3}({\gamma _3} \leqslant \left| {{u_ - } - {u_ + }} \right|)$ 和正常数 ${C_2}$ ,使得当 $\left| {{u_ - } - {u_ + }} \right| \leqslant {\delta _3}$ ${N_0}(t) \leqslant {\gamma _3}$ 时,下面估计式对 $t \in [0,T]$ 成立:

$\begin{split} &{N^2}(t) + \int_{0}^{t}{\left( {{\left\| \sqrt{\left| {{U}_{\xi }} \right|}\varPhi \right\|}^{2}}+{{\left\| {{\varPhi}_{\xi }} \right\|}^{2}}+{{\left\| {{\psi }_{\xi }} \right\|}^{2}}+{{\left\| {{\psi }_{\xi \xi }} \right\|}^{2}} \right)}{\rm d}\tau \leqslant\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \\ &\qquad{C_2}N_0^2\end{split}$ (23)

证明  通过对 $\varPhi$ 进行低阶和高阶估计来证明式(23)成立。

a. 低阶先验估计。

首先,用 $\varPhi$ 乘以式(19),则式(19)化为

$\begin{split}&\varPhi{\varPhi _t} - c\varPhi{\varPhi _\xi } - \alpha \varPhi{\varPhi _{\xi \xi }} + \\ & \qquad\beta \varPhi{\varPhi _{\xi \xi \xi }} +g'(U)\varPhi{\varPhi _\xi } = \varPhi F(U,{\varPhi _\xi })\end{split}$ (24)

由于

$\begin{split} & \qquad \varPhi{\varPhi _t} = \frac{1}{2}{\left( {{\varPhi^2}} \right)_t}\\ & \qquad - c\varPhi{\varPhi _\xi } = - \frac{c}{2}{\left( {{\varPhi^2}} \right)_\xi }\\ & - \alpha \varPhi{\varPhi _{\xi \xi }} + \beta \varPhi{\varPhi _{\xi \xi \xi }} = \varPhi{( - \alpha {\varPhi _\xi } + \beta {\varPhi _{\xi \xi }})_\xi } =\\ &\qquad {\left[ {\varPhi( - \alpha {\varPhi _\xi } + \beta {\varPhi _{\xi \xi }})} \right]_\xi } - {\varPhi _\xi }( - \alpha {\varPhi _\xi } + \beta {\varPhi _{\xi \xi }})=\\ & \qquad {\left[ { - \alpha \varPhi{\varPhi _\xi } + \beta \varPhi{\varPhi _{\xi \xi }} - \frac{\beta }{2}\varPhi _\xi ^2} \right]_\xi } + \alpha {({\varPhi _\xi })^2}\\ & \qquad g'(U)\varPhi{\varPhi _\xi } = \frac{1}{2}{({{g}}'(U){\varPhi^2})_\xi } - \frac{1}{2}{{g}}''(U){U_\xi }{\varPhi^2} \end{split} $

故式(24)可写为

$\begin{split} {\left(\frac{1}{2}{\varPhi^2}\right)_t} +& \alpha \varPhi _\xi ^2 - \frac{1}{2}g''(U){U_\xi }{\varPhi^2} +\\ & {\left\{ {{Q_1}} \right\}_\xi } = \varPhi F(U,{\varPhi _\xi }) \end{split}$ (25)

其中,

${Q_1} = - \alpha \varPhi{\varPhi _\xi } + \beta \varPhi{\varPhi _{\xi \xi }} - \frac{\beta }{2}\varPhi _\xi ^2 - \frac{c}{2}{\varPhi^2} + \frac{1}{2}g'(U){\varPhi^2}$

$r \leqslant {\lambda _0}$ ,即 $\alpha \geqslant - {\lambda _0}$ ,代入式(25)中左边第2项,可得 $r{\varPhi _\xi }^2 \geqslant - {\lambda _0}{\varPhi _\xi }^2$

$\begin{split}&\frac{1}{2}{({\varPhi^2})_t} - {\lambda _0}\varPhi _\xi ^2 - \frac{1}{2}{{g}}''(U){U_\xi }{\varPhi^2} +\\ & \qquad\quad{\left\{ {{Q_1}} \right\}_\xi } \leqslant \varPhi F(U,{\varPhi _\xi })\end{split}$ (26)

将式(26)分别对 $t$ $\xi $ 积分,则式(26)可化为

$\begin{gathered} \frac{1}{2}{\left\| \varPhi \right\|^2} + \int_0^t {\int_\mathbb{R} {\biggr( - {\lambda _0}\varPhi _\xi ^2} } - \frac{1}{2}{{g}}''(U){U_\xi }{\varPhi^2}\biggr){\rm d}\xi {\rm d}\tau \leqslant \\ \frac{1}{2}{\left\| {{\varPhi _0}} \right\|^2} + \int_0^t {\int_\mathbb{R} {\varPhi F(U,{\varPhi _\xi }){\rm d}\xi {\rm d}\tau } } \\ \end{gathered} $

$\begin{split} &\frac{1}{2}{\left\| \varPhi \right\|^2} + \int_{0}^{t}{\left( \left| {{\lambda }_{0}} \right|{{\left\| {{\varPhi}_{\xi }} \right\|}^{2}}+\left| \frac{1}{2}{g}''(U) \right|{{\left\| \sqrt{\left| {{U}_{\xi }} \right|}\varPhi \right\|}^{2}} \right)}{\rm d}\tau\leqslant \!\!\!\!\!\!\!\!\!\!\! \!\!\!\!\!\!\!\!\!\!\! \\ &\qquad \frac{1}{2}{\left\| {{\varPhi _0}} \right\|^2} + \int_0^t {\int_\mathbb{R} {\left| {\varPhi F(U,{\varPhi _\xi })} \right|{\rm d}\xi {\rm d}\tau}} \end{split}$ (27)

由此推知,存在 ${C_1}$ ,使得

$\begin{split}&{\left\| \varPhi \right\|^2} + \int_{0}^{t}{\left( {{\left\| \sqrt{\left| {{U}_{\xi }} \right|}\varPhi \right\|}^{2}}+{{\left\| {{\varPhi}_{\xi }} \right\|}^{2}} \right)}{\rm d}\tau \leqslant\\ &\qquad{C_1}\left\{ {{{\left\| {{\varPhi _0}} \right\|}^2} + \int_0^t {\int_\mathbb{R} {\left| {\varPhi F(U,{\varPhi _\xi })} \right|{\rm d}\xi {\rm d}\tau } } } \right\}\end{split}$

b. 高阶先验估计。

将式(15)线性化,有

$\begin{split}{\psi _t} - c{\psi _\xi } &- \alpha {\psi _{\xi \xi }} + \beta {\psi _{\xi \xi \xi }} +\\ &\;g''(U){U_\xi }\psi + f'(U){\psi _\xi } = {F_\xi }\end{split}$ (28)

$G = {F_\xi }$ ,其中,

$\begin{split}&G = [{{g}}'(U) - {{g}}'(U + \psi )]{U_\xi } - [{{g}}'(U + \psi ) -\\ &\qquad {{g}}'(U)]{\psi _\xi } + {{g}}''(U){U_\xi }\psi \end{split}$

(a) 用 $\psi $ 乘以式(28),有

$\begin{split}&\psi {\psi _t} - c\psi {\psi _\xi } - \alpha \psi {\psi _{\xi \xi }} + \beta \psi {\psi _{\xi \xi \xi }} + \\ &\qquad g''(U){U_\xi }{\psi ^2} +g'(U)\psi {\psi _\xi } = \psi G\end{split}$ (29)

类似于对式(24)的分析,则式(29)可改写为

$\qquad\frac{1}{2}{({\psi ^2})_t} + \alpha \psi _\xi ^2 + \frac{1}{2}g''(U){U_\xi }{\psi ^2} + {\left\{ {{Q_2}} \right\}_\xi } = \psi G$ (30)

其中,

${Q_2} = - \alpha \psi {\psi _\xi } + \beta \psi {\psi _{\xi \xi }} - \frac{1}{2}\beta \psi _\xi ^2 - \frac{c}{2}{\psi ^2} + \frac{1}{2}{\rm{g}}'(U){\psi ^2}$

又由 $\alpha \geqslant - {\lambda _0}$ ,代入式(30),可得

$\qquad\frac{1}{2}{({\psi ^2})_t} - {\lambda _0}{\psi _\xi }^2 + {\left\{ {{Q_2}} \right\}_\xi } \leqslant \psi G - \frac{1}{2}g''(U){U_\xi }{\psi ^2}\!\!\!\!\!\!$ (31)

将式(31)分别对t $\xi $ 积分,则有

$\begin{split}& \frac{1}{2}{\left\| \psi \right\|^2} + \int_0^t {\left| {{\lambda _0}} \right|\left\| {{\psi _\xi }} \right\|^2} {\rm d}\tau \leqslant \frac{1}{2}{\left\| {{\psi _0}} \right\|^2} +\\ &\qquad\quad \int_0^t {\int_\mathbb{R} {\left| {(\psi G - \frac{1}{2}g''(U){U_\xi }{\psi ^2})} \right|} } {\rm d}\xi {\rm d}\tau \end{split}$ (32)

(b) 将式(28)对 $\xi $ 求导,可得

$\begin{split}&{\psi _{t\xi }} - c{\psi _{\xi \xi }} - \alpha {\psi _{\xi \xi \xi }} + \beta {\psi _{\xi \xi \xi \xi }} + \\ &\qquad g'{(U)_{\xi \xi }}\psi +2g'{(U)_\xi }{\psi _\xi } + g'(U){\psi _{\xi \xi }} = {G_\xi }\end{split}$ (33)

${\psi _\xi }$ 乘以式(33),可得

$\begin{split} &{\psi _\xi }{\psi _{t\xi }} - c{\psi _\xi }{\psi _{\xi \xi }} - \alpha {\psi _\xi }{\psi _{\xi \xi \xi }} + \beta {\psi _\xi }{\psi _{\xi \xi \xi \xi }} + \\ & \qquad g'{(U)_{\xi \xi }}\psi {\psi _\xi } +2g'{(U)_\xi }{\psi _\xi }^2 + \\ & \qquad g'(U){\psi _\xi }{\psi _{\xi \xi }} = {\psi _\xi }{G_\xi } \end{split} $ (34)

同理,类似于对式(24)的分析,则式(34)可改写为

$\begin{split}&\frac{1}{2}{(\psi {_\xi ^2})_t} + \alpha \psi {_{\xi \xi }^2} + {\left\{ {{Q_3}} \right\}_\xi } = \\ &\qquad - \frac{3}{2}g''(U){U_\xi }\psi {_\xi ^2} -g'{(U)_{\xi \xi }}\psi {\psi _\xi } + {\psi _\xi }{G_\xi }\end{split}$ (35)

其中,

${Q_3} = - \frac{c}{2}{\psi _\xi }^2 - \alpha {\psi _\xi }{\psi _{\xi \xi }} + \beta {\psi _\xi }{\psi _{\xi \xi \xi }} - \frac{\beta }{2}{\psi _{\xi \xi }}^2 + \frac{1}{2}{\rm{g}}'(U){\psi _\xi }^2$

又式(35)左边第2项有 $\alpha \psi _{\xi \xi }^2 \geqslant - {\lambda _0}\psi _{\xi \xi }^2$ ,代入式(35),可得

$\begin{split}&\frac{1}{2}{(\psi _\xi ^2)_t} - {\lambda _0}\psi _{\xi \xi }^2 + {\left\{ {{Q_3}} \right\}_\xi } \leqslant \\ &\quad\quad - \frac{3}{2}{\rm{g}}''(U){U_\xi }\psi {_\xi ^2} -g'{(U)_{\xi \xi }}\psi {\psi _\xi } + {\psi _\xi }{G_\xi }\end{split}$ (36)

将式(36)分别对 $t$ $\xi $ 积分,有

$\begin{split} &\frac{1}{2}{\left\| {\psi _\xi } \right\|^2} + \int_0^t {\left| {{\lambda _0}} \right|{{\left\| {\psi _{\xi \xi }} \right\|}^2}} {\rm d}\tau \leqslant \\ & \qquad \frac{1}{2}{\left\| {\psi _{0\xi }} \right\|^2} + \int _0 ^t {\int _\mathbb{R} {\Biggr( - \frac{3}{2}g''(U){U_\xi }\psi {{_\xi }^2}} } -\\ &\qquad g'{(U)_{\xi \xi }}\psi {\psi _\xi } + {\psi _\xi }{G_\xi }\Biggr)\,{\rm d}\xi {\rm d}\tau \end{split} $ (37)

再将式(27),式(32),式(37)这3式相加,有

$\begin{gathered} \frac{1}{2}{\left\| \varPhi \right\|^2} + \frac{1}{2}{\left\| \psi \right\|^2} + \frac{1}{2}{\left\| {\psi _\xi } \right\|^2} + \int_{0}^{t}{\left( \left| \frac{1}{2}{g}''(U) \right|{{\left\| \sqrt{\left| {{U}_{\xi }} \right|}\varPhi \right\|}^{2}}+\left| {{\lambda }_{0}} \right|{{\left\| {{\varPhi}_{\xi }} \right\|}^{2}}+\left| {{\lambda }_{0}} \right|{{\left\| {{\psi }_{\xi }} \right\|}^{2}}+\left| {{\lambda }_{0}} \right|{{\left\| {{\psi }_{\xi \xi }} \right\|}^{2}} \right)}\text{d}\tau \leqslant \frac{1}{2}{\left\| {{\varPhi _0}} \right\|^2} + \frac{1}{2}{\left\| {{\psi _0}} \right\|^2} +\\ \frac{1}{2}{\left\| {\psi _{0\xi }} \right\|^2} + \int_0^t {\int_\mathbb{R} {\Bigg(\left| {\frac{1}{2}g''(U){U_\xi }{\psi ^2}} \right| + \left| {\frac{3}{2}g''(U){U_\xi }\psi {{_\xi }^2}} \right| + \left| {g'{{(U)}_{\xi \xi }}\psi {\psi _\xi }} \right| + \left| {\varPhi F(U,{\varPhi _\xi })} \right| + \left| {\psi G} \right| + \left| {{\psi _\xi }{G_\xi }} \right|} } \Bigg){\rm d}\xi {\rm d}\tau \\ \end{gathered} $

进而存在常数 ${C_2}$ ,使得

$ \begin{split} &{\left\| \varPhi \right\|^2} + {\left\| \psi \right\|^2} + {\left\| {\psi _\xi } \right\|^2} + \int_0^t {\Bigg({{\left\| {\sqrt {\left| {{U_\xi }} \right|} \varPhi} \right\|}^2} + {{\left\| {{\varPhi _\xi }} \right\|}^2} + \left\| {{\psi _\xi }} \right\|^2} + {\left\| {\psi _{\xi \xi }} \right\|^2}\Bigg){\rm d}\tau \leqslant {C_2}\Biggr\{ {\left\| {{\varPhi _0}} \right\|^2} + {\left\| {{\psi _0}} \right\|^2} +{\left\| {\psi _{0\xi }} \right\|^2} +\\ &\qquad \int_0^t {\int_\mathbb{R} {\Bigg(\left| {g''(U){U_\xi }{\psi ^2}} \right| + \left| {g''(U){U_\xi }\psi {{_\xi }^2}} \right| + \left| {g'{{(U)}_{\xi \xi }}\psi {\psi _\xi }} \right| + \left| {\varPhi F(U,{\varPhi _\xi })} \right| + \left| {\psi G} \right| + \left| {{\psi _\xi }{G_\xi }} \right|} } \Bigg){\rm d}\xi {\rm d}\tau\Biggr\} \end{split} $ (38)

注意到式(38)右端第4项,利用Young不等式,有

$\int_\mathbb{R} \!\!{g''\!(U){U_\xi }{\psi ^2}{\rm d}\xi } \!\leqslant\! \eta {(g''(U))^2}{\left\| \psi \right\|^2} \!+\! C(\eta ){U_\xi }^2{\left\| \psi \right\|^2}\!\!\!\!\!\!\!\!\!\!$ (39)

其中, $\eta $ 是一充分小的常数。又由 $U(\xi )$ 具有性质3,有 ${U_\xi }^2 \leqslant C{\left| {{u_ - } - {u_ + }} \right|^2}$ (由于C为一常数,平方后仍为一常数,所以,这里仍记为 $C$ ,以下相同),所以,不等式(39)中不等号右边两项可由不等式(38)左端的第4项控制。

同理,对式 (38) 中的 $\displaystyle\int_\mathbb{R} {g''(U){U_\xi }\psi {{_\xi }^2}{\rm d}\xi } $ $\displaystyle\int_\mathbb{R} {g'{{(U)}_{\xi \xi }}\psi {\psi _\xi }{\rm d}\xi } $ ,运用Young不等式,可以推出这两项均可由不等式(38)左端的第4项控制。从而存在常数 ${C_3}$ ,使得

$\begin{split} & {{\left\| \varPhi \right\|}^{2}}+{{\left\| \psi \right\|}^{2}}+{{\left\| {{\psi }_{\xi }} \right\|}^{2}}+\int_{0}^{t}\left({{{\left\| \sqrt{\left| {{U}_{\xi }} \right|}\varPhi \right\|}^{2}}+}{{\left\| {{\varPhi}_{\xi }} \right\|}^{2}}+ \right.\\ &\qquad\left. {{\left\| {{\psi }_{\xi }} \right\|}^{2}}+{{\left\| {{\psi }_{\xi \xi }} \right\|}^{2}}\right)\text{d}\tau \leqslant{{C}_{3}}\{{{\left\| {{\varPhi}_{0}} \right\|}^{2}}+{{\left\| {{\psi }_{0}} \right\|}^{2}}+ {{\left\| {{\psi }_{0\xi }} \right\|}^{2}}+\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\qquad\int_{0}^{t}{\int_\mathbb{R}{\left( \left| \varPhi F(U,{{\varPhi}_{\xi }}) \right|+\left| \psi G \right|+\left| {{\psi }_{\xi }}{{G}_{\xi }} \right| \right)}}\text{d}\xi \text{d}\tau \end{split} $ (40)

又因为,

$\begin{split} &F(U,{\varPhi _\xi }) = - \{ ({{g}}(U + {\varPhi _\xi }) - g(U)) - g'(U){\varPhi _\xi }\} =\\ &\quad- \{ g'(U + \theta {\varPhi _\xi }){\varPhi _\xi } - g'(U){\varPhi _\xi }\} \end{split}$
$\begin{split} &G = {F_\xi } = - \{ g'(U + {\varPhi _\xi })({U_\xi } + {\varPhi _{\xi \xi }}) - \\ &\quad g'(U){U_\xi } - g'(U){\varPhi _{\xi \xi }} - g''(U){U_\xi }{\varPhi _\xi }\}=\\ &\quad - \{ g''(U + \theta {\varPhi _\xi }){U_\xi }{\varPhi _\xi } + g''(U + \theta {\varPhi _\xi }){\varPhi _\xi }{\varPhi _{\xi \xi }} -\\ &\quad g''(U){U_\xi }{\varPhi _\xi }\} \end{split} $

所以,

$\begin{split} &\int_\mathbb{R} {\varPhi F(U,{\varPhi _\xi })} {\rm d}\xi = \int_\mathbb{R} {({{g}}'(U + \theta {\varPhi _\xi }) - {{g}}'(U))\varPhi{\varPhi _\xi }} {\rm d}\xi = \quad\quad\\ &\;\;\;\int_\mathbb{R} \left({{{ (({{g}}'(U + \theta {\varPhi _\xi }) - {{g}}'(U)){\varPhi^2})}_\xi } - ({{g}}'(U + \theta {\varPhi _\xi }) - } \right. \\ &\;\;\;\left.{{g}}'(U))'{\varPhi^2}\right){\rm d}\xi = - \int_\mathbb{R} {({{g}}''(U + \theta {\varPhi _\xi }) - {{g}}''(U)){U_\xi }{\varPhi^2}{\rm d}\xi } \end{split} $

利用Young不等式,可得

$\begin{split} &\int_\mathbb{R} {\left| {(g''(U + \theta {\varPhi _\xi }) - g''(U)){U_\xi }{\varPhi^2}} \right|{\rm d}\xi } \leqslant \\ &\qquad{\eta _0}{(g''(U + \theta {\varPhi _\xi }) - g''(U))^2}{\left\| \varPhi \right\|^2} + C({\eta _0}){U_\xi }^2{\left\| \varPhi \right\|^2}\end{split}\quad\quad\quad $

$\begin{gathered} \int_\mathbb{R} {\varPhi F(U,{\varPhi _\xi })} {\rm d}\xi \leqslant {\eta _0}{(g''(U + \theta {\varPhi _\xi }) - g''(U))^2}{\left\| \varPhi \right\|^2} + \\ C({\eta _0}){U_\xi }^2{\left\| \varPhi \right\|^2} { \leqslant {C_4}{{\left| {{u_-} - {u_ + }} \right|}^2}{{\left\| \varPhi \right\|}^2}} \end{gathered} $

同样,利用Young不等式,可得

$ \begin{split} &\qquad\int_\mathbb{R} {\left| {g''(U + \theta {\varPhi _\xi }){U_\xi }\psi {\varPhi _\xi }} \right|{\rm d}\xi } \leqslant \\ & \qquad\qquad {\eta _1}{(g''(U + \theta {\varPhi _\xi }))^2}{\left\| \psi \right\|^2} +C({\eta _1}){U_\xi }^2{\left\| {{\varPhi _\xi }} \right\|^2}\\ &\int_\mathbb{R} {\left| {g''(U + \theta {\varPhi _\xi })\psi {\varPhi _\xi }{\varPhi _{\xi \xi }}} \right|{\rm d}\xi } \leqslant \\ & \qquad{C_5}N(t)\int_\mathbb{R} {g''(U + \theta {\varPhi _\xi }){\varPhi _\xi }{\varPhi _{\xi \xi }}{\rm d}\xi } \leqslant \\ &\qquad{C_5}N(t)({\eta _2}{\left\| {{\varPhi _\xi }} \right\|^2} + C({\eta _2}){(g''(U + \theta {\varPhi _\xi }))^2}{\left\| {{\varPhi _{\xi \xi }}} \right\|^2}) \\ &\int_\mathbb{R} {\left| { - g''(U){U_\xi }\psi {\varPhi _\xi }} \right|{\rm d}\xi }\! \leqslant\! {\eta _3}{(g''(U))^2}{\left\| \psi \right\|^2} \!\!+\! C({\eta _3}){U_\xi }^2{\left\| {{\varPhi _\xi }} \right\|^2} \end{split} $

所以,

$\int_\mathbb{R} {\left| {\psi G} \right|{\rm d}\xi \leqslant {C_6}N(t)({{\left\| \psi \right\|}^2} + {{\left\| {{\psi _\xi }} \right\|}^2})}\!\! + {\left| {{u_-}\! - {u_ + }} \right|^2}{\left\| \psi \right\|^2}\!\!\!\!\!\!\!$ (41)

同理,类似于对 $\displaystyle\int_\mathbb{R} {\varPhi F(U,{\varPhi _\xi })} {\rm d}\xi $ $\displaystyle\int\nolimits_\mathbb{R} {\psi G{\rm d}\xi } $ 的分析,可得

$\quad \int_\mathbb{R} {\left| {{\psi _\xi }{G_\xi }} \right|{\rm d}\xi } \leqslant {C_7}N(t){\left\| {{\psi _\xi }} \right\|^2} + {\left| {{u_-} - {u_ + }} \right|^2}{\left\| {{\psi _{\xi \xi }}} \right\|^2}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ (42)

从而

$\begin{split} &\int_0^t {\int_\mathbb{R} {(\left| {\varPhi F(U,{\varPhi _\xi })} \right| + \left| {\psi G} \right| + \left| {{\psi _\xi }{G_\xi }} \right|} } ){\rm d}\xi {\rm d}\tau \leqslant \\ &\quad\qquad{C_8}N(t)\int_0^t {({{\left\| \psi \right\|}^2} + {{|| {{\psi _\xi }} ||}^2})} {\rm d}\tau + \\ &\quad\qquad{C_9}{\left| {{u_-} - {u_ + }} \right|^2}\int_0^t {({{\left\| \varPhi \right\|}^2} + {{\left\| \psi \right\|}^2} + {{|| {{\psi _{\xi \xi }}} ||}^2}){\rm d}\tau } \end{split} \!\!\!\!\!\!\!\!\!$ (43)

由于在局部存在的时间区间内,式(22)成立,可得

$\begin{gathered} N(t) \leqslant \mathop {\sup }\limits_{0 \leqslant \tau \leqslant T} \{ K\left\| {{\varPhi _0}(\tau )} \right\|_{{H^2}}^2 + K|| {{\varPhi _{0\xi }}(\tau )} ||_{{H^1}}^2\} = \\ \qquad\quad K\mathop {\sup }\limits_{0 \leqslant \tau \leqslant T} \{ \left\| {{\varPhi _0}(\tau )} \right\|_{{H^2}}^2 + \left\| {{\psi _0}(\tau )} \right\|_{{H^1}}^2\} = KN_0^2(t) \end{gathered} \qquad\quad$

故存在 ${\delta _3}$ ${\gamma _3}$ ,当 $\left| {{u_-} - {u_ + }} \right| \leqslant {\delta _3}$ ${N_0}(t) \leqslant {\gamma _3}$ 时。式(43)右端积分式可被不等式(40)左端相应积分项所控制。于是,可得命题1。

现证明定理1

证明   a. 因为,命题1成立,由定理3可知, $\varPhi \in X(0,{T_0})$ ,将 $\varPhi(0,{T_0})$ 作为问题式(18)和式(20)的初值,由定理3和命题1可知,存在充分小的 ${T_1}$ ,使得问题式(18)和式(20)存在唯一解 $\varPhi \in X(0,$ $ {T_0} + {T_1})$ ,再将以上步骤反复进行,最后就可将局部解延拓到整个时间 $T \geqslant 0$ 。那么,可知存在唯一全局解

$\varPhi \in X(0,\infty ) = \left\{ {\varPhi \in {C^0}(0,\infty ;{H^2}),{\varPhi _\xi } \in {L^2}(0,\infty ;{H^2})} \right\}$

由此可知:

(a) ${\varPhi _\xi } \in {L^2}(0,\infty ;{H^2})$ ,即 $\;\psi \! \in {L^2}(0,\infty ;{H^2})$ ;(b) $ \varPhi \in$ $ {C^0}(0,\infty ;{H^2})$ ,所以,可知 ${\varPhi _\xi } \in {C^0}(0,\infty ;{H^1})$ ,即 $\psi \in$ $ {C^0}(0, \infty ;{H^1})$

据(a)和(b)可以推知

$\psi \in {C^0}(0,\infty ;{H^1}) \cap {L^2}(0,\infty ;{H^2})$

$u - U \in {C^0}(0,\infty ;{H^1}) \cap {L^2}(0,\infty ;{H^2})$

故式(13)得证。

b. 由式(23)可知, $\left\| \psi \right\|_{{H^1}}$ 关于 $t$ 连续, $\displaystyle\int_0^{ + \infty } {\left\| \psi \right\|_{{H^2}}^2{\rm d}t} $ 存在,且根据式(23)可推知

$\mathop {\lim }\limits_{t \to \infty } \;\left\| {\psi (t)} \right\|_{{H^2}}^2 = 0$ (44)

式(44)意味着对任意的 $t > 0$ ,有

$\int_0^t {\left\| \psi \right\|_{{H^2}}^2{\rm d}\tau } \leqslant {C_2}N_0^2$

由于被积函数非负,可知 $\left\| \psi \right\|_{{H^2}}^2$ 关于 $t$ $[0,\infty )$ 上可积,即有

$\mathop {\lim }\limits_{t \to \infty }\; \left\| {\psi (t)} \right\|_{{H^2}}^2 = 0$ (45)

根据不等式[15]

${\left\| f \right\|_{{L^\infty }({R^n})}} \leqslant C{\left\| f \right\|_{{H^{\frac{n}{2}}}({R^n})}}$

可得

$\mathop {\sup }\limits_{x \in \mathbb{R}} \left| \psi \right| \leqslant C{\left\| \psi \right\|_{{H^2}}}$

由此,根据式(45)即可推得

$ \mathop {\sup }\limits_{x \in \mathbb{R}} \left| \psi \right| \to 0,\text{当}\;t \to \infty $

故定理1得证。

4 方程(1)单调递减扭状孤波解扰动的衰减估计

前面已经证明了方程(1)单调递减行波解 $U(\xi )$ 是渐近稳定的,即在满足定理1条件下,方程(1)单调递减扭状孤波解 $U(\xi )$ 的扰动 $\psi (t,\xi )$ $t \to \infty $ 时是衰减于零的。现进一步研究扰动 $\psi (t,\xi )$ 的衰减率问题。

引理3(Gagliardo-Nirenberg不等式[16]) 假设 $u \in {L^p}({\mathbb{R}^n})$ ${D^m}u \in {L^q}({\mathbb{R}^n})$ $1 \leqslant p$ $q < \infty $ ,则对任意 $j(0 \leqslant j < m)$ ,有

${\left\| {{D^j}u} \right\|_r} \leqslant C\left\| u \right\|_p^{1 - \lambda }\left\| {{D^m}u} \right\|_q^\lambda $

其中,

$\frac{1}{r} - \frac{j}{n} = \lambda \left(\frac{1}{q} - \frac{m}{n}\right) + (1 - \lambda )\frac{1}{p},\;\frac{j}{m} \leqslant \lambda \leqslant 1$

$m - \frac{n}{q} = j,\;1 < q < \infty $ 时, $\lambda \ne 1$

定理4  假设 $U(\xi )$ $(\xi = x - ct)$ 是方程(1)如定理1所设的扭状孤波解,初值 ${u_0}$ 满足式(11)和式(12),则存在1个与t无关的正常数 ${C_{11}}$ ,使得

$\begin{split} (1 + t){\left\| {{\varPhi _\xi }} \right\|^2} &+ \int_0^t \left({(1 + \tau ){{\left\| {{\varPhi _\xi }} \right\|}^2} + (1 + \tau ){{\left\| {{\varPhi _{\xi \xi }}} \right\|}^2}}\right) {\rm d}\tau \leqslant\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &{C_{11}}{\sigma _0}^2 \end{split}\qquad$ (46)

成立。其中, ${\sigma _0} = \left| {{u_-} - {u_ + }} \right|$ 是一个充分小的数,且式(46)中 ${\varPhi _\xi }$ ${\varPhi _{\xi \xi }}$ 如前所设,以下相同。

证明  将式(19)对 $\xi $ 求导一次,有

$ \begin{split} &{\varPhi _{t\xi }} - c{\varPhi _{\xi \xi }} - \alpha {\varPhi _{\xi \xi \xi }} + \beta {\varPhi _{\xi \xi \xi \xi }} + \\ &\qquad{(g'(U){\varPhi _\xi })_\xi } = {F_\xi }(U,{\varPhi _\xi }) \end{split} $ (47)

在式(47)两边同乘以 $\left( {1 + t} \right){\varPhi _\xi }$ ,有

$\begin{split} &(1 + t){\varPhi _\xi }{\varPhi _{t\xi }} - c(1 + t){\varPhi _\xi }{\varPhi _{\xi \xi }} - \alpha (1 + t){\varPhi _\xi }{\varPhi _{\xi \xi \xi }} +\\ &\qquad\quad\beta (1 + t){\varPhi _\xi }{\varPhi _{\xi \xi \xi \xi }} + (1 + t){\varPhi _\xi }{(g'(U){\varPhi _\xi })_\xi } = \\ & \quad\qquad(1 + t){\varPhi _\xi }{F_\xi }(U,{\varPhi _\xi }) \\ \end{split} $ (48)

由于

$\begin{split}&(1 + t){\varPhi _\xi }{\varPhi _{t\xi }} = {\left(\frac{1}{2}(1 + t){\varPhi _\xi }^2\right)_t} - \frac{1}{2}{\varPhi _\xi }^2- c(1 + t){\varPhi _\xi }{\varPhi _{\xi \xi }} = \\ &\quad{\left(\frac{c}{2}(1 + t){\varPhi _\xi }^2\right)_\xi} - \alpha (1 + t){\varPhi _\xi }{\varPhi _{\xi \xi \xi }} + \beta (1 + t){\varPhi _\xi }{\varPhi _{\xi \xi \xi \xi }} =\\ &\quad (1 + t){\varPhi _\xi }{( - \alpha {\varPhi _{\xi \xi }} + \beta {\varPhi _{\xi \xi \xi }})_\xi }={[(1 + t){\varPhi _\xi }( - \alpha {\varPhi _{\xi \xi }} +}\\ &\quad{ \beta {\varPhi _{\xi \xi \xi }})]_\xi } -(1 + t){\varPhi _\xi }{( - \alpha {\varPhi _{\xi \xi }} + \beta {\varPhi _{\xi \xi \xi }})}=\\ &\quad{[(1 + t){\varPhi _\xi }( - \alpha {\varPhi _{\xi \xi }} + \beta {\varPhi _{\xi \xi \xi }})]_\xi }-\alpha (1 + t){\varPhi _{\xi \xi }}^2 - \\ & \quad \frac{\beta }{2}(1 + t){({\varPhi _{\xi \xi }}^2)_\xi }= \Biggr\{ (1 + t){\varPhi _\xi }( - \alpha {\varPhi _{\xi \xi }} + \beta {\varPhi _{\xi \xi \xi }}) -\\ &\quad { \frac{\beta }{2}(1 + t){\varPhi _{\xi \xi }}^2\Biggr\} } \,_{_\xi} + \alpha (1 + t){\varPhi _{\xi \xi }}^2 \end{split}$
$\begin{split} &(1 + t){\varPhi _\xi }{(g'(U){\varPhi _\xi })_\xi } = {[(1 + t){\varPhi _\xi }g'(U){\varPhi _\xi }]_\xi } -\qquad\\ &\quad(1 + t){\varPhi _{\xi \xi }}{\varPhi _\xi }g'(U) (1 + t)g''(U){U_\xi }{\varPhi _\xi }^2 +\\ &\quad{\{ (1 + t){\varPhi _\xi }^2g'(U)\} _\xi } \end{split} $

故式(48)可写为

$\begin{split} &{\left(\frac{1}{2}(1 + t){\varPhi _\xi }^2\right)_t} + \alpha (1 + t){\varPhi _{\xi \xi }}^2 + \frac{1}{2}(1 + t)g''(U){U_\xi }{\varPhi _\xi }^2 + \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\qquad {\{ {Q_4}\} _\xi } = \frac{1}{2}{\varPhi _\xi }^2 + (1 + t){\varPhi _\xi }{F_\xi }(U,{\varPhi _\xi }) \end{split} $ (49)

其中,

$\begin{split}&{Q_4} = \frac{c}{2}(1 + t){\varPhi _\xi }^2 + (1 + t){\varPhi _\xi }( - \alpha {\varPhi _{\xi \xi }} + \beta {\varPhi _{\xi \xi \xi }}) -\\ &\qquad\frac{\beta }{2}(1 + t){\varPhi _{\xi \xi }}^2 + (1 + t){\varPhi _\xi }^2{{g}}'(U)\end{split}$

又由式(49)左边第2项,有

$\alpha (1 + t){\varPhi _{\xi \xi }}^2 \geqslant - {\lambda _0}(1 + t){\varPhi _{\xi \xi }}^2$ (50)

将式(50)代入式(49)中,有

$ \begin{split}&{\left(\frac{1}{2}(1 + t){\varPhi _\xi }^2\right)_t} - {\lambda _0}(1 + t){\varPhi _{\xi \xi }}^2{\rm{ + }}\frac{1}{2}(1 + t)g''(U){U_\xi }{\varPhi _\xi }^2 + \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\qquad{\{ {Q_4}\} _\xi } \leqslant \frac{1}{2}{\varPhi _\xi }^2 + (1 + t){\varPhi _\xi }{F_\xi }(U,{\varPhi _\xi }) \end{split} $ (51)

将式(51)分别对 $t$ $\xi $ 积分,有

$\begin{split} & \frac{1}{2}(1+t){{\left\| {{\varPhi}_{\xi }} \right\|}^{2}}+\int_{0}^{t}\int_\mathbb{R}\Biggr(\left| {{\lambda }_{0}}(1+\tau ){{\varPhi}_{\xi \xi }}^{2} \right|+ \\ &\quad \left| \frac{1}{2}(1+\tau ){g}''(U){{U}_{\xi }}{{\varPhi}_{\xi }}^{2} \right|\Biggr){\rm d}\xi {\rm d}\tau \frac{1}{2}{{\left\| {{\varPhi}_{0\xi }} \right\|}^{2}}+ \\ &\quad \int_{0}^{t}{\int_\mathbb{R}{\left(\left| \frac{1}{2}{{\varPhi}_{\xi }}^{2} \right|+\left| (1+\tau ){{\varPhi}_{\xi }}{{F}_{\xi }}(U,{{\varPhi}_{\xi }}) \right|\right){\rm d}\xi {\rm d}\tau }} \end{split} \qquad\;\;$

故存在常数 ${C_{10}}$ ,有

$\begin{split} & \!\!\!\!\!\!(1 \!\!+\!\! t){\left\| {{\varPhi _\xi }} \right\|^2} \!\!+\!\! \int_0^t {\int_\mathbb{R} {((1 \!\!+\!\! \tau ){\varPhi _{\xi \xi }}^2 \!\!+\!\! (1 \!\!+\!\! \tau ){\varPhi _\xi }^2){\rm d}\xi {\rm d}\tau } } \leqslant \!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\;\;\;\!\!{C_{10}}\biggr\{ {\left\| {{\varPhi _{0\xi }}} \right\|^2} \!\!+\!\! \int_0^t {\int_\mathbb{R} \!\!{({\varPhi _\xi }^2 \!\!\!+\!\!\! (1 \!\!+\!\! \tau ){\varPhi _\xi }{F_\xi }(U,{\varPhi _\xi })){\rm d}\xi {\rm d}\tau \biggr\} } } \!\!\!\!\!\!\!\!\! \end{split}$ (52)

又由式(23)可知

$\int_0^t {{{\left\| {{\varPhi _\xi }} \right\|}^2}{\rm d}\tau \leqslant {C_2}N_0^2 \leqslant {C_2}{{\left| {{u_-} - {u_ + }} \right|}^2}} $

注意到式(52)中,

$\begin{split}&\int_0^t {\int_\mathbb{R} {(1 + \tau ){\varPhi _\xi }{F_\xi }(U,{\varPhi _\xi }){\rm d}\xi {\rm d}\tau } } =\qquad\qquad\\ &\quad\int_0^t {\int_\mathbb{R} {(1 + \tau )\psi G(U,{\varPhi _\xi }){\rm d}\xi {\rm d}\tau } } \end{split}$

类似于对式(41)与式(43)的分析,有

$\begin{split} &\int_0^t {\int_\mathbb{R} {(1 + \tau )\psi G(U,{\varPhi _\xi }){\rm d}\xi {\rm d}\tau } } \leqslant \\ &\quad\int_0^t {(1 + \tau )({C_6}N(t)({{\left\| \psi \right\|}^2} + {{\left\| {{\psi _\xi }} \right\|}^2}) + {{\left| {{u_-} - {u_ + }} \right|}^2}{{\left\| \psi \right\|}^2})} {\rm d}\tau \leqslant \\ &\quad\int_0^t {(1 + \tau )({C_6}N_0^2({{\left\| \psi \right\|}^2} + {{\left\| {{\psi _\xi }} \right\|}^2}) + {{\left| {{u_-} - {u_ + }} \right|}^2}{{\left\| \psi \right\|}^2})}{\rm d}\tau \leqslant \\ &\quad {\sigma _1}^2\int_0^t {(1 + \tau )({{\left\| \psi \right\|}^2} + {{\left\| {{\psi _\xi }} \right\|}^2})} {\rm d}\tau \\ \end{split} $

其中, ${\sigma _1} = C\left| {{u_-} - {u_ + }} \right| = C{\sigma _0}$ 。从而不等式(52)右端积分项可由左端相应积分项控制,则存在常数 ${C_{11}}$ ,可将式(52)改写为

$\begin{split} (1 + t){\left\| {{\varPhi _\xi }} \right\|^2} &+ \int_0^t {\biggr((1 + \tau ){{\left\| {{\varPhi _\xi }} \right\|}^2} + (1 + \tau ){{\left\| {{\varPhi _{\xi \xi }}} \right\|}^2}\biggr)} {\rm d}\tau \leqslant \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &{C_{11}}\sigma _0^2 \end{split}$ (53)

故定理4得证。

定理5  假设 $U(\xi )$ $\xi = x - ct$ )是方程(1)如定理1所设的扭状孤波解,初值 ${u_0}$ 满足式(11)和式(12),则存在1个与t无关的正常数 ${C_{12}}$ ,使得

$\begin{split} & {{(1+t)}^{2}}{{\left\| {{\varPhi}_{\xi \xi }} \right\|}^{2}}+\int_{0}^{t}{\int_\mathbb{R}{\biggr({{(1+\tau )}^{2}}{{\varPhi}_{\xi \xi }}^{2}+}} \\ &\qquad {{(1+\tau )}^{2}}{{\varPhi}_{\xi \xi \xi }}^{2}\biggr)\text{d}\xi \text{d}\tau \leqslant{{C}_{12}}\sigma _{0}^{2} \end{split}$

成立,其中, ${\sigma _0} = \left| {{u_-} - {u_ + }} \right|$ 是1个充分小的数。

证明  将式(19)对 $\xi $ 求二阶导数,有

$\begin{split}&{\varPhi _{t\xi \xi }} - c{\varPhi _{\xi \xi \xi }} - \alpha {\varPhi _{\xi \xi \xi \xi }} + \beta {\varPhi _{\xi \xi \xi \xi \xi }} + \\ &\qquad{(g'(U){\varPhi _\xi })_{\xi \xi }} = {F_{\xi \xi }}(U,{\varPhi _\xi })\end{split}$ (54)

在式(54)两边同时乘以 ${(1 + t)^2}{\varPhi _{\xi \xi }}$ ,有

$\begin{split} &{(1 \!+\! t)^2}{\varPhi _{\xi \xi }}{\varPhi _{t\xi \xi }} \!-\! c{(1 \!+\! t)^2}{\varPhi _{\xi \xi }}{\varPhi _{\xi \xi \xi }} -\\ &\quad \alpha {(1 \!+\! t)^2}{\varPhi _{\xi \xi }}{\varPhi _{\xi \xi \xi \xi }} \!+\! \beta {(1 \!+\! t)^2}{\varPhi _{\xi \xi }}{\varPhi _{\xi \xi \xi \xi \xi }} \!+ \\ &\quad {(1 \!+\! t)^2}{\varPhi _{\xi \xi }}{(g'(U){\varPhi _\xi })_{\xi \xi }} \!=\!{(1 \!+ t\!)^2}{\varPhi _{\xi \xi }}{F_{\xi \xi }}(U,{\varPhi _\xi }) \end{split} \!\!\!\!\!\!\!\!$ (55)

类似于对式(48)的分析,式(55)可改写为

$\begin{split} &\frac{1}{2}{({(1 + t)^2}{\varPhi _{\xi \xi }}^2)_t} + \alpha {(1 + t)^2}{\varPhi _{\xi \xi \xi }}^2 + \\ &\qquad\frac{1}{2}{(1 + t)^2}g''(U){U_\xi }{\varPhi _{\xi \xi }}^2 + {\{ {Q_5}\} _\xi } =\\ &\qquad (1 + t){\varPhi _{\xi \xi }}^2 + {(1 + t)^2}g''(U){U_\xi }{\varPhi _\xi }{\varPhi _{\xi \xi \xi }} + \\ &\qquad{(1 + t)^2}{\varPhi _{\xi \xi }}{F_{\xi \xi }}(U,{\varPhi _\xi }) \end{split} $ (56)

其中,

$\begin{split} &{Q_5} = \frac{c}{2}{(1 + t)^2}{\varPhi _{\xi \xi }}^2 + {(1 + t)^2}{\varPhi _{\xi \xi }}( - \alpha {\varPhi _{\xi \xi \xi }} + \beta {\varPhi _{\xi \xi \xi \xi }}) - \\ &\quad\frac{\beta }{2}{(1 + t)^2}{\varPhi _{\xi \xi \xi }}^2 { + {{(1 + t)}^2}{\varPhi _{\xi \xi }}(g''(U){U_\xi }{\varPhi _\xi } + g'(U){\varPhi _{\xi \xi }})} \end{split} $

又由式(56)左边第2项,有

$\alpha {(1 + t)^2}{\varPhi _{\xi \xi \xi }}^2 \geqslant - {\lambda _0}{(1 + t)^2}{\varPhi _{\xi \xi \xi }}^2$ (57)

将式(57)代入式(56)中,有

$\begin{split} &\frac{1}{2}{({(1 + t)^2}{\varPhi _{\xi \xi }}^2)_t} - {\lambda _0}{(1 + t)^2}{\varPhi _{\xi \xi \xi }}^2 +\\ &\qquad\frac{1}{2}{(1 + t)^2}g''(U){U_\xi }{\varPhi _{\xi \xi }}^2 + {\{ {Q_5}\} _\xi } \leqslant \\ &\qquad(1 + t){\varPhi _{\xi \xi }}^2 + {(1 + t)^2}g''(U){U_\xi }{\varPhi _\xi }{\varPhi _{\xi \xi \xi }} +\\ &\qquad{(1 + t)^2}{\varPhi _{\xi \xi }}{F_{\xi \xi }}(U,{\varPhi _\xi }) \end{split} $ (58)

将式(58)分别对 $t$ $\xi $ 积分,有

$ \begin{split} &\frac{1}{2}{(1 + t)^2}{\left\| {{\varPhi _{\xi \xi }}} \right\|^2} + \int_0^t {\int_\mathbb{R} { \biggr(\left|{{\lambda _0}{{(1 + \tau )}^2}{\varPhi _{\xi \xi \xi }}^2} \right| + } } \\ &\quad\left| {\frac{1}{2}{{(1 + \tau )}^2}g''(U){U_\xi }{\varPhi _{\xi \xi }}^2} \right|\biggr){\rm{d}}\xi {\rm{d}}\tau \frac{1}{2}{\left\| {{\varPhi _{0\xi \xi }}} \right\|^2} + \\ &\quad\int_0^t {\int_\mathbb{R} {\biggr(\left| {(1 + \tau ){\varPhi _{\xi \xi }}^2} \right| + \left| {{{(1 + \tau )}^2}g''(U){U_\xi }{\varPhi _\xi }{\varPhi _{\xi \xi \xi }}} \right| + } } \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\quad\left| {{{(1 + \tau )}^2}{\varPhi _{\xi \xi }}{F_{\xi \xi }}(U,{\varPhi _\xi })} \right|\biggr){\rm{d}}\xi {\rm{d}}\tau \end{split} $ (59)

由式(53)可知

$\qquad\qquad {\int_0^t {(1 + \tau )\left\| {{\varPhi _{\xi \xi }}} \right\|} ^2}{\rm d}\tau \leqslant {C_{11}}{\sigma _0}^2$

注意到不等式(59)右端第3项,运用Young不等式,有

$\begin{split}&\int_0^t {\int_\mathbb{R} {g''(U){U_\xi }{\varPhi _\xi }{\varPhi _{\xi \xi \xi }}} {\rm d}\xi {\rm d}\tau } \leqslant \qquad\qquad\qquad\\ &\quad\int_0^t {\biggr(\eta {{(g''(U))}^2}{{\left\| {{\varPhi _\xi }} \right\|}^2} + C(\eta ){U_\xi }^2{{\left\| {{\varPhi _{\xi \xi \xi }}} \right\|}^2}\biggr){\rm d}\tau }\end{split} $

其中, $\eta $ 是1个充分小的数,且 $U_\xi ^2$ 满足性质3。又由式(23),有

$\int_0^t \biggr( {\left\| {{\varPhi _\xi }} \right\|^2} + {\left\| {{\psi _{\xi \xi }}} \right\|^2}\biggr){\rm d}\tau \leqslant {C_2}N_0^2$

从而,

$\begin{split}&\int_0^t {\int_\mathbb{R} {g''(U){U_\xi }{\varPhi _\xi }{\varPhi _{\xi \xi \xi }}} {\rm d}\xi {\rm d}\tau } \leqslant\\ &\quad\int_0^t \biggr({\eta {{(g''(U))}^2}{{\left\| {{\varPhi _\xi }} \right\|}^2} + C(\eta ){U_\xi }^2{{\left\| {{\varPhi _{\xi \xi \xi }}} \right\|}^2}\biggr){\rm d}\tau \leqslant } {C_2}N_0^2\end{split}$

$\begin{split}&\int_0^t {\int_\mathbb{R} {{{(1 + \tau )}^2}{\varPhi _{\xi \xi }}{F_{\xi \xi }}(U,{\varPhi _\xi })} {\rm d}\xi {\rm d}\tau } =\\ &\quad\int_0^t {\int_\mathbb{R} {{{(1 + \tau )}^2}{\psi _\xi }{G_\xi }(U,{\varPhi _\xi })} {\rm d}\xi {\rm d}\tau }\end{split} $

根据式(42),有

$\begin{split} & \int_0^t {\int_\mathbb{R} {{{(1 + \tau )}^2}{\psi _\xi }{G_\xi }(U,{\varPhi _\xi })}{\rm d}\xi {\rm d}\tau } \leqslant \\ &\quad \int_0^t {{{(1 + \tau )}^2}({C_7}N(t){{\left\| {{\psi _\xi }} \right\|}^2} + {{\left| {{u_-} - {u_ + }} \right|}^2}{{\left\| {{\psi _{\xi \xi }}} \right\|}^2}){\rm d}\tau } \leqslant\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \\ &\quad { \sigma _2^2} \int_0^t {{{(1 + \tau )}^2}({C_7}N_0^2{{\left\| {{\psi _\xi }} \right\|}^2} + {{\left| {{u_-} - {u_ + }} \right|}^2}{{\left\| {{\psi _{\xi \xi }}} \right\|}^2}){\rm d}\tau } \leqslant \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\quad \sigma _2^2\int_0^t {{{(1 + \tau )}^2}({{\left\| {{\psi _\xi }} \right\|}^2} + {{\left\| {{\psi _{\xi \xi }}} \right\|}^2}){\rm d}\tau } \end{split} $ (60)

其中, ${\sigma _2} = C{\sigma _0}$ ,从而不等式(60)右端积分项可由式(59)左端相应积分项控制,则存在常数 ${C_{12}}$ ,可将式(59)改写为

$\begin{split} {(1 + t)^2}&{\left\| {{\varPhi _{\xi \xi }}} \right\|^2} + \int_0^t {\int_\mathbb{R} {({{(1 + \tau )}^2}{\varPhi _{\xi \xi }}^2 + } } {C_{12}}\sigma _0^2\\ &{(1 + \tau )^2}{\varPhi _{\xi \xi \xi }}^2){\rm d}\xi {\rm d}\tau \leqslant{C_{12}}\sigma _0^2 \end{split}$ (61)

故定理5得证。

由式(53)可知

$(1 + t){\left\| {{\varPhi _\xi }} \right\|^2} \leqslant {C_{11}}{\sigma _0}^2$ (62)

又由式(61),有

${(1 + t)^2}{\left\| {{\varPhi _{\xi \xi }}} \right\|^2} \leqslant {C_{12}}{\sigma _0}^2$ (63)

由式(62)和式(63),有

$\qquad\quad{(1 + t)^k}{\left\| {{D^k}\varPhi( \cdot ,t)} \right\|^2} \leqslant {C_{1k}}{\sigma _0}^2,k = 1,2$

因此,可得 $\varPhi$ $k(k= 1,2)$ 阶导数在 ${L^2}$ 范数意义下的衰减速度为

$\qquad\quad {\left\| {{D^k}\varPhi( \cdot ,t)} \right\|_{{L^2}}} \leqslant {C_{1k}}{\sigma _0}{(1 + t)^{ - \frac{k}{2}}},\;k = 1,2$

再由Gargliado-Nirenberg不等式,得到 $\psi $ ${L^\infty }$ 范数意义下的衰减速度为

$\begin{split}&{\left\| {{\varPhi _\xi }( \cdot ,t)} \right\|_{{L^\infty }}} \leqslant {C_{13}}\left\| {{\varPhi _\xi }( \cdot ,t)} \right\|_{{L^2}}^{1 - \frac{1}{4}} \left\| {{D^2}{\varPhi _\xi }( \cdot ,t)} \right\|_{{L^2}}^{\frac{1}{4}} \leqslant \!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\quad\qquad C{\sigma _0}{(1 + t)^{ - \frac{1}{4}}}\end{split}$

$\psi = {\varPhi _\xi }$ ,则方程(1)单调递减扭状孤波解的扰动 $\psi (t,\xi )$ ${L^2}$ ${L^\infty }$ 范数意义下当 $t \to \infty $ 时分别是以 ${(1 + t)^{ - 1/2}}$ ${(1 + t)^{ - 1/4}}$ 的速率衰减到零。

5 结 论

a. 组合KdV-Burgers方程(1)在耗散 $r \leqslant {\lambda _0}$ 时的单调递减扭状孤波解是渐近稳定的。

b. 组合KdV-Burgers方程(1)单调递减扭状孤波解的扰动在 ${L^2}$ ${L^\infty }$ 范数意义下的衰减速率分别为 ${(1 + t)^{ - 1/2}}$ ${(1 + t)^{ - 1/4}}$

参考文献
[1]
NARAYANAMURTI V, VARMA C M. Nonlinear propagation of heat pulses in solids[J]. Physical Review Letters, 1970, 25(16): 1105-1108. DOI:10.1103/PhysRevLett.25.1105
[2]
TAPPERT F D, VARMA C M. Asymptotic theory of self-trapping of heat pulses in solids[J]. Physical Review Letters, 1970, 25(16): 1108-1111. DOI:10.1103/PhysRevLett.25.1108
[3]
KIMIAKI K, YOSHI H I. A modified Korteweg de Vries equation for ion acoustic waves[J]. Journal of the Physical Society of Japan, 1974, 37(6): 1631-1636. DOI:10.1143/JPSJ.37.1631
[4]
WADATI M. Wave propagation in nonlinear lattice. I[J]. Journal of the Physical Society of Japan, 1975, 38(3): 673-686. DOI:10.1143/JPSJ.38.673
[5]
DEY B. Domain wall solutions of KdV like equations with higher order nonlinearity[J]. Journal of Physics A: Mathematical and General, 1999, 19(1): L9-L12.
[6]
RAADU M A, CHANTEUR G. Formation of double layers: shocklike solutions of an mKdV-equation[J]. Physica Scripta, 1986, 33(3): 240-245. DOI:10.1088/0031-8949/33/3/011
[7]
ZHANG W G. A brief introduction to the members (mathematics) of academia sinica newly elected in 1995[J]. Acta Mathematica Scientia, 1996, 16(3): 241-248. DOI:10.1016/S0252-9602(17)30799-3
[8]
WANG M L. Exact solutions for a compound KdV-Burgers equation[J]. Physics Letters A, 1996, 213(5/6): 279-287.
[9]
SHANG Y D. Exact and explicit solutions to the compound KdV-Burgers equation[J]. Journal of Engineering Mathematics, 2000, 17(4): 99-102.
[10]
ZHANG W G, DONG C Y, FAN E G. Conditional stability of solitary-wave solutions for generalized compound KdV equation and generalized compound KdV-Burgers equation[J]. Communications in Theoretical Physics, 2006, 46(6): 1091-1100. DOI:10.1088/0253-6102/46/6/025
[11]
ZHANG W G, ZHAO Y, TENG X Y. Approximate damped oscillatory solutions for compound KdV-Burgers equation and their error estimates[J]. Acta Mathematicae Applicatae Sinica, English Series, 2012, 28(2): 305-324. DOI:10.1007/s10255-012-0147-5
[12]
BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256. DOI:10.1002/(ISSN)1097-0207
[13]
GUO B L. The global solutions for a class of generalized KdV equations[J]. Acta Mathematica Sinica, 1982, 25(6): 641-656.
[14]
DIAZ J B, METCALF F T. An analytic proof of Young's inequality[J]. American Mathematical Monthly, 1970, 77: 603-609. DOI:10.1080/00029890.1970.11992547
[15]
EVANS L C. Partial differential equations[M]. 2nd ed. Providence, Rhode Island: American Mathematical Society, 2010.
[16]
EVANS L C. Partial differential equations and Monge-Kantorovich mass transfer[J]. Current Developments in Mathematics, 1997, 1997(1): 65-126. DOI:10.4310/CDM.1997.v1997.n1.a2