上海理工大学学报  2019, Vol. 41 Issue (3): 214-223   PDF    
分数阶微分方程组边值问题解的存在性与唯一性
郭莉莉, 刘锡平, 贾梅, 蹇星月     
上海理工大学 理学院,上海 200093
摘要: 研究了一类高阶Riemann-Liouville分数阶微分方程组边值问题。通过Laplace变换的方法得到边值问题解的积分表达形式,建立了边值问题解的存在性定理和存在唯一性定理,利用Leray-Schauder抉择证明了解的存在性定理,运用Banach压缩映射原理证明了解的存在唯一性定理。最后给出2个例子说明所得结论的适用性。
关键词: 微分方程组     边值问题     Riemann-Liouville分数阶导数     Laplace变换     不动点定理    
Existence and Uniqueness of Solutions of Boundary Value Problems for Fractional Differential Equation Systems
GUO Lili, LIU Xiping, JIA Mei, JIAN Xingyue     
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract: A class of boundary value problems for high order Riemann-Liouville fractional differential equation systems was studied. By the Laplace transform method, the integral expression of the boundary value problems was obtained. The existence theorem and the existence and uniqueness theorem for the solutions of the boundary value problems were established and proved by using the Leray-Schauder alternative and the Banach contraction mapping principle, respectively. Two examples were given to illustrate the main results.
Key words: differential equation system     boundary value problem     Riemann-Liouville fractional derivative     Laplace transform     fixed point theorem    
1 问题的提出

在工程技术和科学研究中,有许多现象是由微分方程来描述的。随着科学技术的发展,人们对分数阶微分方程的研究越来越多,取得了很多成果[1-13]

微分方程组通常用来描述涉及到多个状态变量的运动系统,文献[14-15]研究了具有Caputo导数的分数阶微分方程组边值问题解的存在性。

本文研究一类高阶Riemann-Liouville分数阶微分方程组边值问题。

$\left\{ \begin{split} & {{\rm {D}}^\alpha }{ {U}}(t) + { \varLambda} {{\rm {D}}^{\alpha - 1}}{ {U}}(t) = { {F}}(t,{ {U}}(t)),\;\;0 < t < 1\\ & {u_1}({\eta _1}) = {u_2}({\eta _2}) = {u_3}({\eta _3}) = \cdots = {u_n}({\eta _n}) = 0 \\ & {u_1}(1) = {u_2}(1) = {u_3}(1) = \cdots = {u_n}(1) = 0 \end{split} \right.$ (1)

其中,

${ {U}}(t) = \left( {\begin{array}{*{20}{c}} {{u_1}(t)} \\ {{u_2}(t)} \\ \vdots \\ {{u_n}(t)} \end{array}} \right),\;\;{{\rm {D}}^\alpha }{ {U}}(t) = \left( \begin{gathered} {{\rm {D}}^\alpha }{u_1}(t) \\ {{\rm {D}}^\alpha }{u_2}(t) \\ {\rm{ }} \vdots \\ {{\rm {D}}^\alpha }{u_n}(t) \\ \end{gathered} \right)\\{ {F}} = \left( {\begin{array}{*{20}{c}} {{f_1}} \\ {{f_2}} \\ \vdots \\ {{f_n}} \end{array}} \right), \;{ {\varLambda}} = \left( {\begin{array}{*{20}{c}} {{\lambda _1}}&0&0& \cdots &0 \\ 0&{{\lambda _2}}&0& \cdots &0 \\ 0&0&{{\lambda _3}}& \cdots &0 \\ \vdots & \vdots & \vdots & \; & \vdots \\ 0&0&0& \cdots &{{\lambda _n}} \end{array}} \right)$

${{\rm {D}}^\alpha }$ 表示Riemann-Liouville导数, $1 < \alpha < 2,0 < {\lambda _i} <$ $ 1,0 < {\eta _i} < 1,{f_i} \in C(I \times {\mathbb{R}^n},{\rm{ }}\mathbb{R})$ $t \in [0,1],\;\;$ $i = 1,2, \cdots ,n$

2 预备知识与引理

为了后面证明的需要,现给出一些定义和引理。

定义1[16]  设函数 $f(t)$ $t \geqslant 0$ 时有定义,且积分 $\displaystyle\int_0^{ + \infty } {f(t){{\rm e}^{ - st}}\operatorname{d} } t$ $s$ 是一个复变量)在s的某一个域内收敛,则由此积分所确定的函数 $F(s) = \displaystyle\int_0^{ + \infty } {f(t){{\rm e}^{ - st}}{\rm d} t} $ 称为函数 $f(t)$ 的Laplace变换,记 $F(s) = {\cal{L}}\left( {f(t)} \right),$ F(s)称为 $f(t)$ 的像函数. 在相同条件下,称

$f(t) = {{\cal{L}}^{ - 1}}\left( {F(s)} \right) = \frac{1}{{2\pi {\rm {i}}}}\int_{{{s}} - {\rm i}\infty }^{{ {s}} + {\rm i}\infty } {F(p)} {{\rm e}^{pt}}{\rm d} p$

$F(s)$ 的Laplace逆变换。

引理1[16]  若 ${\cal{L}}\left( {{f_1}(t)} \right) = {F_1}(s),{\rm{ }}{\cal{L}}\left( {{f_2}(t)} \right) = {F_2}(s),$

$\begin{split} &{\cal{L}}\left( {{f_1}(t)*{f_2}(t)} \right) = {F_1}(s){F_2}(s) \\ &{{\cal{L}}^{ - 1}}\left( {{F_1}(s)*{F_2}(s)} \right) = {f_1}(t){f_2}(t) \end{split} $

定义2[16]  函数 $u:{\mathbb{R}_ + } \to \mathbb{R}$ $\alpha $ 阶Riemann-Liouville分数阶积分定义为

${{\rm I}^\alpha }u(t) = \frac{1}{{\Gamma (\alpha )}}\int_0^t {{{(t - \tau )}^{\alpha - 1}}} u(\tau ){\rm d} \tau$

对任意的 $\alpha > 0$ ,右端积分在 ${\mathbb{R}_ + }$ 上逐点可积, $\Gamma ( \cdot )$ 是Gamma函数。

定义3[17]  函数 $u:{\mathbb{R}_ + } \to \mathbb{R}$ $\alpha $ 阶Riemann-Liouville分数阶导数定义为

${{\rm {D}}^\alpha }u(t) = {{\rm {D}}^n}{{\rm I}^{n - \alpha }}u(t) = \frac{1}{{\Gamma (n - \alpha )}}{\left(\frac{{\rm {d}}}{{{\rm {d}}{t^n}}}\right)^n}\int_0^t {\frac{{u(\tau )}}{{{{(t - \tau )}^{\alpha + 1 - n}}}}} {\rm d} \tau$

对任意的 $\alpha > 0$ ,右端积分在 ${\mathbb{R}_ + }$ 上逐点可积,n为大于或等于 $\alpha $ 的最小整数。

引理2[17]  对任意的 $\alpha > 0,$ 函数 $u:{\mathbb{R}_ + } \to \mathbb{R}$ $\alpha $ 阶Laplace变换公式为

${\cal{L}}({{\rm {D}} ^ \alpha} u)(s) = {s ^ \alpha}{\cal{L}}(u)(s) - \sum\limits_{j = 1}^l {{d_j}} {s^{j - 1}},\;\;\;l - 1 \leqslant \alpha \leqslant l,{\rm{ }}l \in \mathbb{N}$
${d_j} = ({{\rm {D}}^{\alpha - j}}u)(0^+ ),\;\;j = 1,2, \cdots ,l$

定义4[17]  令 $\alpha ,\beta > 0$ ,函数 ${E_{\alpha ,\beta }}$ 的定义为

${E_{\alpha ,\beta }}(z) = \sum\limits_{k = 0}^\infty {\frac{{{z^k}}}{{\Gamma (\alpha k + \beta )}}}$

当级数收敛时,称级数是关于参数 $\alpha ,\beta $ 的二元Mittag-Leffler函数。

引理3[17]  Mittag-Leffler函数的Laplace变换公式为

$\begin{split}&{\cal{L}}\left( {{t^{\alpha k + \beta - 1}}E_{\alpha ,\beta }^{(k)}( \pm a{t^\alpha })} \right) = \int_0^\infty {{{\rm e}^{ - st}}{t^{\alpha k + \beta - 1}}} E_{\alpha ,\beta }^{(k)}( \pm a{t^\alpha }){\rm d} t = \\ &\qquad\qquad\frac{{k!{s^{\alpha - \beta }}}}{{{{({s^\alpha } { m}a)}^{k + 1}}}},\;\; {\rm {Re}}(s) > |a{|^{\frac{1}{\alpha }}}\end{split}$

引理4[17]  广义Mittag-Leffler导数定义为

$\begin{split}&E_{\alpha ,\beta }^{(n)}(z) = {\left(\frac{{\rm d}}{{{\rm d}z}}\right)^n}\left( {E_{\alpha ,\beta }^{n + 1}(z)} \right) = n!E_{\alpha ,\beta + \alpha n}^{n + 1}(z),\\ &\qquad z \in \mathbb{C},\;\alpha ,\beta ,\rho \in \mathbb{C},\;R (\alpha ) > 0\end{split}$

其中,

$\begin{split} & E_{\alpha ,\beta }^\rho (z) = \sum\limits_{k = 0}^\infty {\frac{{{{(\rho )}_k}}}{{\Gamma (\alpha k + \beta )}}} \frac{{{z^k}}}{{k!}} \\ & {(\rho )_k} = \rho (\rho + 1) \cdots (\rho + k - 1) \end{split} $

引理5  设 ${\rm{0}} < {\lambda _1} < 1$ , 则级数

$\begin{split} &\sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}}}{{n!}}} {t^{n + \alpha - 1}}E_{1,\alpha }^{(n)}( - t) = \\ & \quad\sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}}}{{n!}}} {t^{n + \alpha - 1}}\sum\limits_{k = 0}^\infty {\frac{{\Gamma (n + k + 1)}}{{\Gamma (n + k + \alpha )}}} \frac{{{{( - t)}^k}}}{{k!}} \buildrel \displaystyle\Delta \over = {g_{11}}(t) \\ &\sum\limits_{n = 0}^\infty {\frac{{(1 + {\lambda _1}){{(1 - {\lambda _1})}^n}}}{{n!}}} {t^{n + \alpha - 1}}E_{1,\alpha }^{(n)}( - t) =\\ & \quad\sum\limits_{n = 0}^\infty {\frac{{(1 + {\lambda _1}){{(1 - {\lambda _1})}^n}}}{{n!}}} {t^{n + \alpha - 1}}\sum\limits_{k = 0}^\infty {\frac{{\Gamma (n + k + 1)}}{{\Gamma (n + k + \alpha )}}} \frac{{{{( - t)}^k}}}{{k!}} \buildrel \displaystyle\Delta \over = {g_{12}}(t)\\ &{t^{2 - \alpha }}\sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}}}{{n!}}} {t^{n + \alpha - 2}}E_{1,\alpha - 1}^{(n)}( - t) = \\ & \quad \sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}}}{{n!}}} {t^n}\sum\limits_{k = 0}^\infty {\frac{{\Gamma (n + k + 1)}}{{\Gamma (n + k + \alpha - 1)}}} \frac{{{{( - t)}^k}}}{{k!}} \buildrel \displaystyle\Delta \over = {t^{2 - \alpha }}{g_{13}}(t) \end{split} $

$[0,1]$ 上一致收敛。证明从略。

因为,

$ \begin{split}& \mathop {\lim }\limits_{t \to {0^ + }}\; {t^{2 - \alpha }}{g_{13}}(t) =\\ &\qquad \mathop {\lim }\limits_{t \to {0^ + }} \left(\sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}}}{{n!}}{t^n}\sum\limits_{k = 0}^\infty {\frac{{\Gamma (n + k + 1)}}{{\Gamma (n + k + \alpha - 1)}} \frac{{{{( - t)}^k}}}{{k!}}} } \right) =\\ &\qquad\frac{1}{{\Gamma (\alpha - 1)}} \end{split}$

所以, ${t^{2 - \alpha }}{g_{13}}(t){|_{t = 0}} = \dfrac{1}{{\Gamma (\alpha - 1)}}$ ,即函数 ${t^{2 - \alpha }}{g_{13}}(t)$ $t $ = 0时连续。

引理6  函数 ${g_{11}}(t),{g_{12}}(t),{g_{13}}(t)$ 的性质:

a. $ 0 < {g_{11}}(t) < \dfrac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _1})}};$

b. 函数 ${g_{11}}(t),{g_{12}}(t),{t^{2 - \alpha }}{g_{13}}(t)$ 在[0, 1]上连续。

证明   a. 由引理5可知, ${g_{11}}(t) > 0$ 显然成立。

$\begin{split} {g_{11}}(t) =& \sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}}}{{n!}}} {t^{n + \alpha - 1}}\sum\limits_{k = 0}^\infty {\frac{{\Gamma (n + k + 1)}}{{\Gamma (n + k + \alpha )}}} \frac{{{{( - t)}^k}}}{{k!}} = \\ & \sum\limits_{k = 0}^\infty {{{( - 1)}^k} \frac{{{t^{k + \alpha - 1}}}}{{\Gamma (k + \alpha )}}} + \\ &\sum\limits_{n = 1}^\infty {\frac{{{{(1 - {\lambda _1})}^n}}}{{n!}}} {t^{n + \alpha - 1}}\sum\limits_{k = 0}^\infty {\frac{{\Gamma (n + k + 1)}}{{\Gamma (n + k + \alpha )}}} \frac{{{{( - t)}^k}}}{{k!}} \end{split} $

由引理5可知,级数 $\displaystyle\sum\limits_{k = 0}^\infty {{{( - 1)}^k} \dfrac{{{t^{k + \alpha - 1}}}}{{\Gamma (k + \alpha )}}} $ 关于t $[0,1]$ 上一致收敛,

因为,

$\frac{{{t^{k + \alpha }}}}{{\Gamma (k + \alpha + 1)}} \frac{{\Gamma (k + \alpha )}}{{{t^{k + \alpha - 1}}}} = \frac{t}{{k + \alpha }} < 1$

所以,函数列 $\left\{ \dfrac{{{t^{k + \alpha - 1}}}}{{\Gamma (k + \alpha )}}\right\} $ 关于k单调递减。

结合Leibniz判别法可知,

$0 < \sum\limits_{k = 0}^\infty {{{( - 1)}^k}} \frac{{{t^{k + \alpha - 1}}}}{{\Gamma (k + \alpha )}} < \frac{{{t^{\alpha - 1}}}}{{\Gamma (\alpha )}} < \frac{1}{{\Gamma (\alpha )}}$

由引理5可知,级数

$\begin{split}&\sum\limits_{n = 1}^\infty {\frac{{(1 - {\lambda _1})}}{{n!}}} {t^{n + \alpha - 1}}\sum\limits_{k = 0}^\infty {\frac{{\Gamma (n + k + 1)}}{{\Gamma (n + k + \alpha )}}} \frac{{{{( - t)}^k}}}{{k!}} < \\ &\qquad\sum\limits_{n = 0}^\infty {\frac{{{{\left( {t(1 - {\lambda _1})} \right)}^n}}}{{n!}}} = {{\rm e}^{t(1 - {\lambda _1})}} < {{\rm e}^{(1 - {\lambda _1})}}\end{split}$

即证 $ 0 < {g_{11}}(t) < \dfrac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _1})}}$

b. 函数 ${g_{11}}(t),{g_{12}}(t),{t^{2 - \alpha }}{g_{13}}(t)$ 在[0, 1]上连续,显然成立。

证毕。

引理7  设 $1 \!\!<\!\! \alpha \!\! <\!\! 2,$ ${\varDelta _1}\!\!=\!\! {g_{12}}({\eta _1}){g_{13}}(1) \!-\! $ ${g_{12}}(1){g_{13}}({\eta _1})\!\! \ne $ 0,则对任意 ${h_1} \in C(I,\mathbb{R})$ ,边值问题

$\left\{ \begin{split} &{{\rm D}^\alpha }{u_1}(t) + {\lambda _1}{{\rm D}^{\alpha - 1}}{u_1}(t) = {h_1}(t),\;\;\;{\rm{ }}0 < t < 1 \\ &{u_1}({\eta _1}) = 0,\;\;\;{\rm{ }}{u_1}(1) = 0 \end{split} \right.$ (2)

存在唯一解

$\begin{split} &{u_1}(t) = \int_0^t {{g_{11}}(t - \tau )} {h_1}(\tau ){\rm d} \tau + \hspace{80pt}\\ &\quad\frac{{{g_{12}}(1){g_{13}}(t) - {g_{13}}(1){g_{12}}(t)}}{{{\varDelta _1}}}\!\! \int_0^{{\eta _1}} {{g_{11}}({\eta _1} - \tau )} {h_1}(\tau ){\rm d} \tau + \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\quad \frac{{{g_{13}}({\eta _1}){g_{12}}(t) \!- \!{g_{12}}({\eta _1}){g_{13}}(t)}}{{{\varDelta _1}}}\!\! \int_0^1 {{g_{11}}(1 \!-\! \tau )} {h_1}(\tau ){\rm d} \tau \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \end{split} $ (3)

证明  由引理2可知,

$\begin{split} &{\cal{L}}({{\rm D}^\alpha }{u_1}(t))(s) = {s^\alpha }{\cal{L}}(u(t))(s) - {d_{11}} - {d_{12}}s\\ &{\cal{L}}({{\rm D}^{\alpha - 1}}{u_1}(t))(s) = {s^{\alpha - 1}}{\cal{L}}(u(t))(s) - {d_{11}} \end{split} $

所以,对 ${{\rm D}^\alpha }{u_1}(t) + {\lambda _1}{{\rm D}^{\alpha - 1}}{u_1}(t) = {h_1}(t)$ 进行Laplace变换,可得

$({s^\alpha } + {\lambda _1}{s^{\alpha - 1}}){\cal{L}}({u_1}(t))(s) - (1 + {\lambda _1}){d_{11}} - {d_{12}}s = {\cal{L}}({h_1}(t))(s)$

整理得到

$\begin{split}{\cal{L}}({u_1}(t))(s) =& \frac{1}{{{s^\alpha } + {\lambda _1}{s^{\alpha - 1}}}}{\cal{L}}({h_1}(t))(s) + \\ &\frac{{1 + {\lambda _1}}}{{{s^\alpha } + {\lambda _1}{s^{\alpha - 1}}}}{d_{11}} +\frac{s}{{{s^\alpha } + {\lambda _1}{s^{\alpha - 1}}}}{d_1}_2\end{split}$

又因为,

$\begin{split}&\dfrac{1}{{{s^\alpha } + {\lambda _1}{s^{\alpha - 1}}}} = \dfrac{{{s^{1 - \alpha }}}}{{s + {\lambda _1} + 1 - 1}} = \dfrac{{{s^{1 - \alpha }}}}{{1 + s}} \dfrac{1}{{1 + \dfrac{{{\lambda _1} - 1}}{{1 + s}}}} =\hspace{40pt} \\ &\qquad\quad\dfrac{{{s^{1 - \alpha }}}}{{1 + s}}\sum\limits_{n = 0}^\infty {\dfrac{{{{(1 - {\lambda _1})}^n}}}{{{{(1 + s)}^n}}}} = \sum\limits_{n = 0}^\infty {\dfrac{{{{(1 - {\lambda _1})}^n}{s^{1 - \alpha }}}}{{{{(1 + s)}^{n + 1}}}}}\end{split} $
$\begin{split}&\dfrac{s}{{{s^\alpha } + {\lambda _1}{s^{\alpha - 1}}}} = \dfrac{{{s^{2 - \alpha }}}}{{s + {\lambda _1} + 1 - 1}} = \dfrac{{{s^{2 - \alpha }}}}{{1 + s}} \dfrac{1}{{1 + \dfrac{{{\lambda _1} - 1}}{{1 + s}}}} = \hspace{40pt}\\ &\qquad\quad\dfrac{{{s^{2 - \alpha }}}}{{1 + s}}\sum\limits_{n = 0}^\infty {\dfrac{{{{(1 - {\lambda _1})}^n}}}{{{{(1 + s)}^n}}}} = \sum\limits_{n = 0}^\infty {\dfrac{{{{(1 - {\lambda _1})}^n}{s^{2 - \alpha }}}}{{{{(1 + s)}^{n + 1}}}}}\end{split}$

所以,

$\begin{split} & {\cal{L}}({u_1}(t))(s) = \sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}{s^{1 - \alpha }}}}{{{{(1 + s)}^{n + 1}}}}} {\cal{L}}({h_1}(t))(s) +\\ &\qquad\quad\sum\limits_{n = 0}^\infty {\frac{{(1 + {\lambda _1}){{(1 - {\lambda _1})}^n}{s^{1 - \alpha }}}}{{{{(1 + s)}^{n + 1}}}}} {d_{11}} +\\ &\qquad\quad\sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}{s^{2 - \alpha }}}}{{{{(1 + s)}^{n + 1}}}}} {d_{12}} \end{split} $ (4)

由引理3可知,

$\begin{split} &\frac{{{s^{1 - \alpha }}}}{{{{(1 + s)}^{n + 1}}}} = \frac{1}{{n!}}{\cal{L}}\left( {{t^{n + \alpha - 1}}E_{1,\alpha }^{(n)}( - t)} \right)(s) \\ &\frac{{{s^{2 - \alpha }}}}{{{{(1 + s)}^{n + 1}}}} = \frac{1}{{n!}}{\cal{L}}\left( {{t^{n + \alpha - 2}}E_{1,\alpha - 1}^{(n)}( - t)} \right)(s) \end{split} $ (5)

将式(5)代入式(4)并整理,得到

$\!\!\!\!\!\!\begin{split} \!\!\!\!\!\!\!\!&{\cal{L}}({u_1}(t))(s) \!\!=\!\! {\cal{L}}\left( {\sum\limits_{n = 0}^\infty {\frac{{{{(1 \!\!-\!\! {\lambda _1})}^n}}}{{n!}}{t^{n + \alpha - 1}}E_{1,\alpha }^{(n)}( - t)} } \right)(s) {\cal{L}}({h_1}(t))(s) +\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \\ &\qquad\quad {d_{11}}{\cal{L}}\left( {\sum\limits_{n = 0}^\infty {\frac{{(1 + {\lambda _1}){{(1 - {\lambda _1})}^n}}}{{n!}}{t^{n + \alpha - 1}}E_{1,\alpha }^{(n)}( - t)} } \right)(s) +\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ & \qquad\quad {d_{12}}{\cal{L}}\left( {\sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _1})}^n}}}{{n!}}{t^{n + \alpha - 2}}E_{1,\alpha - 1}^{(n)}( - t)} } \right)(s) =\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \\ &\qquad \quad {\cal{L}}({g_{11}}(t))(s) {\cal{L}}({h_1}(t))(s) + {d_{11}}{\cal{L}}({g_{12}}(t))(s) + \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \\ &\qquad\quad{d_{12}}{\cal{L}}({g_{13}}(t))(s)= {\cal{L}}\left( {{g_{11}}(t)*{h_1}(t)} \right)(s) +\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \\ & \qquad\quad{d_{11}}{\cal{L}}({g_{12}}(t))(s) + {d_{12}}{\cal{L}}({g_{13}}(t))(s) = \\ &\qquad\quad {\cal{L}}\left( {\int_0^t {{g_{11}}(t - \tau )} {h_1}(\tau ){\rm d} \tau } \right)(s) + \\ &\qquad\quad{d_{11}}{\cal{L}}({g_{12}}(t))(s) + {d_{12}}{\cal{L}}({g_{13}}(t))(s)\end{split}$ (6)

对式(6)两边进行Laplace逆变换,得到

${{ u}_1}(t) = \int_0^t {{g_{11}}(t - \tau )} {h_1}(\tau ){\rm d} \tau + {d_{11}}{g_{12}}(t) + {d_{12}}{g_{13}}(t)$ (7)

将边界条件 ${u_1}(1) = 0,{\rm{ }}{u_1}({\eta _1}) = 0$ 代入式(7),得到

$\begin{split} &\int_0^{{\eta _1}} {{g_{11}}({\eta _1} - \tau )} {h_1}(\tau ){\rm d} \tau + {d_{11}}{g_{12}}({\eta _1}) + {d_{12}}{g_{13}}({\eta _1}) = 0\\ & \quad\int_0^1 {{g_{11}}(1 - \tau )} {h_1}(\tau ){\rm d} \tau + {d_{11}}{g_{12}}(1) + {d_{12}}{g_{13}}(1) = 0 \end{split} $

$ {\varDelta _1} \ne 0$ 时,解得

$\begin{split}{d_{11}} =& \frac{1}{{{\varDelta _1}}}\left( {{g_{13}}({\eta _1})\int_0^1 {{g_{11}}(1 - \tau )} {h_1}(\tau ){\rm d} \tau -}\right.\\ &\left.{ {g_{13}}(1)\int_0^{{\eta _1}} {{g_{11}}({\eta _1} - \tau )} {h_1}(\tau ){\rm d} \tau } \right)\end{split}$
$\begin{split}{d_{12}} =& \frac{1}{{{\varDelta _1}}}\left( {{g_{12}}(1)\int_0^{{\eta _1}} {{g_{11}}({\eta _1} - \tau )} {h_1}(\tau ){\rm d} \tau -}\right.\\ &\left.{{g_{12}}({\eta _1})\int_0^1 {{g_{11}}(1 - \tau )} {h_1}(\tau ){\rm d} \tau } \right)\end{split}$

d1d2带入式(7),可得式(3)成立。

证毕。

由引理7即可得到引理8。

引理8  边值问题(1)等价于积分方程

$\begin{split} {u_i}(t) =& \int_0^t {{g_{i1}}(t - \tau )} {f_i}(\tau ,{u_1}(\tau ), \cdots ,{u_n}(\tau )){\rm d} \tau +\\ &\quad\frac{{{g_{i2}}(1){g_{i3}}(t) - {g_{i3}}(1){g_{i2}}(t)}}{{{\varDelta _i}}}{\text{·}}\\ &\quad\int_0^{{\eta _i}} {{g_{i1}}({\eta _i} - \tau )} {f_i}(\tau ,{u_1}(\tau ), \cdots ,{u_n}(\tau )){\rm d} \tau + \\ &\quad\frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}}{\text{·}}\\ &\quad\int_0^1 {{g_{i1}}(1 - \tau )} {f_i}(\tau ,{u_1}(\tau ), \cdots ,{u_n}(\tau )){\rm d} \tau \end{split} $

其中,

$i = 1,2, \cdots ,n,\;\;{\varDelta _i} = {g_{i2}}({\eta _i}){g_{i3}}(1) - {g_{i2}}(1){g_{i3}}({\eta _i}) \ne 0$
$\begin{split} &{g_{i1}}(t) = \sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _i})}^n}}}{{n!}}} {t^{n + \alpha - 1}}E_{1,\alpha }^{(n)}( - t) \\ & {g_{i2}}(t) = \sum\limits_{n = 0}^\infty {\frac{{(1 + {\lambda _i}){{(1 - {\lambda _i})}^n}}}{{n!}}} {t^{n + \alpha - 1}}E_{1,\alpha }^{(n)}( - t) \\ & {g_{i3}}(t) = \sum\limits_{n = 0}^\infty {\frac{{{{(1 - {\lambda _i})}^n}}}{{n!}}} {t^{n + \alpha - 2}}E_{1,\alpha - 1}^{(n)}( - t) \end{split} $

引理9[18](Leray-Shauder抉择) 令 $E$ 是Banach空间,假设 $T:E \to E$ 是全连续算子,令 $V(T) = \{ x \in E:$ 存在 $\mu \in (0,1),$ 使得 $x = \mu T(x)\} $ ,则集合 $V(T)$ 是无界集或者算子T至少存在1个不动点。

3 解的存在性与唯一性

空间 ${E_1} = C_{2 - \alpha }^0[0,1] = \{ u \in C(0,1]:\mathop {\lim }\limits_{t \to {0^ + }}\; {t^{2 - \alpha }}u(t)$ 存在 $\} $ ,以范数 $||u|| = \mathop {\sup }\limits_{t \in (0,1]}\; {t^{2 - \alpha }}|u(t)|$ 构成了Banach空间。所以, $E = \underbrace {{E_1} \times {E_1} \times \cdots \times {E_1}}_n$ 以范数 $||{ U}|{|_E}{\rm{ = ||}}{u_1}|| + $ $ {\rm{||}}{u_2}|| + \cdots + {\rm{||}}{u_n}||$ 构成了Banach空间。

${\varDelta _i} \ne 0,{\rm{ }}i = 1,2, \cdots ,n$ ,为了方便,给出记号:

${l_{i1}} = \mathop {\sup }\limits_{t \in (0,1]} \;\left|{t^{2 - \alpha }} \frac{{{g_{i2}}(1){g_{i3}}(t) - {g_{i3}}(1){g_{i2}}(t)}}{{{\varDelta _i}}}\right|$
${l_{i2}} = \mathop {\sup }\limits_{t \in (0,1]} \;\left|{t^{2 - \alpha }} \frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}}\right|$

由引理8可知,对任意的 $ { U}(t) = {({u_1}(t),{u_2}(t), \cdots ,}$ ${{u_n}(t))^{\rm T}} \in E,$ 定义算子

$T({ U})(t) = {\left( {{T_1}({ U})(t), \cdots ,{T_n}({ U})(t)} \right)^{\rm {\rm T}}}$

$\begin{split} &{T_i}({ U}(t)) = \int_0^t {{g_{i1}}(t - \tau )} {f_i}(\tau ,{ U}(\tau ))\operatorname{d} \tau + \\ &\quad \frac{{{g_{i2}}(1){g_{i3}}(t) - {g_{i3}}(1){g_{i2}}(t)}}{{{\varDelta _i}}}{\text{·}}\\ &\quad \int_0^{{\eta _i}} {{g_{i1}}({\eta _i} - \tau )} {f_i}(\tau ,{ U}(\tau )){\rm d} \tau+ \\ &\quad\frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}}{\text{·}}\\ &\quad \int_0^1 {{g_{i1}}(1 - \tau )} {f_i}(\tau ,{ U}(\tau )){\rm d} \tau \end{split} $ (8)

其中, $i = 1,2,\cdots, n$ 。所以,算子 $T:E \to E$

为了证明的方便,给出记号:

${\gamma _i} = \frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}},{\rm{ }}{\theta _i} = 1 + {\eta _i}{l_{i1}} + {l_{i2}}$ (9)
$\quad{\varPhi _0} = {\gamma _1}{\theta _1}{k_{10}} + {\gamma _2}{\theta _2}{k_{20}} + \cdots + {\gamma _n}{\theta _n}{k_{n0}}\quad\quad\quad$
$ {\varPhi _i} = \frac{1}{{\alpha - 1}}({\gamma _1}{\theta _1}{k_{1i}} + {\gamma _2}{\theta _2}{k_{2i}} + \cdots + {\gamma _n}{\theta _n}{k_{ni}}) $ (10)

定理1  设 ${\varDelta _i} \ne 0$ , 存在实数 ${k_{ij}}(i,j = 1,2, \cdots ,n)$ ${k_{i0}} > 0$ ,使得

$|{f_i}(t,{u_1}, \cdots ,{u_n})| \leqslant {k_{i0}} + {k_{i1}}|{u_1}| + \cdots + {k_{in}}|{u_n}|$

并且设 $\max\; \{ {\varPhi _1},{\varPhi _2}, \cdots ,{\varPhi _n}\} < 1$ , 其中, ${\varPhi _i}$ 是由式(10)给出的,则边值问题(1)在[0, 1]上至少存在1个解。

证明  由假设条件可知,任意

$\begin{split} &{ U}(t) = {({u_1}(t),{u_2}(t), \cdots ,{u_n}(t))^{\rm T}} \in E, \\ &|{f_i}(t,{u_1}(t),{u_2}(t), \cdots ,{u_n}(t))| \leqslant{k_{i0}} + {k_{i1}}|{u_1}(t)| + \\ & \quad {k_{i2}}|{u_2}(t)| + \cdots + {k_{in}}|{u_n}(t)|= {k_{i0}} + {t^{\alpha - 2}}({k_{i1}}{t^{2 - \alpha }}|{u_1}(t)| +\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ & \quad{k_{i2}}{t^{2 - \alpha }}|{u_2}(t)| \!+\! \cdots \!+\! {k_{in}}{t^{2 - \alpha }}|{u_n}(t)|) \!= \\ &\quad{k_{i0}} + {t^{\alpha - 2}}({k_{i1}}||{u_1}|| + {k_{i2}}||{u_2}|| + \cdots + {k_{in}}||{u_n}||) \end{split} $ (11)

a. 证明算子T是全连续。

(a) $T$ 是连续算子。

$\{ {{ U}_m}\} \subset E,{\rm{ }}{ U} \in E$ ,当 $m \to \infty $ 时, $ ||{{ U}_m} - { U}|{|_E} \to$ $ 0$ ,则存在一个常数 $\sigma > 0$ ,使得 $||{{ U}_m}|{|_E} \leqslant \sigma ,{\rm{ ||}}{ U}{\rm{|}}{{\rm{|}}_E} \leqslant $ $ \sigma $ ,即对任意的 $t \in [0,1]$ ,有 $|{t^{2 - \alpha }}{u_i}_m| \leqslant \sigma $ , ${\rm{|}}{t^{2 - \alpha }}{u_i}| \leqslant $ $ \sigma $ 。因此,对几乎处处的 $t \in [0,1]$ ,有

$\begin{split}&\mathop {\lim }\limits_{m \to \infty } \;{f_i}(t,{{ U}_m}(t)) = \mathop {\lim }\limits_{m \to \infty }\;{f_i}(t,{t^{\alpha - 2}}{t^{2 - \alpha }}{{ U}_m}(t)) = \\ &\qquad\quad{f_i}(t,{t^{\alpha - 2}}{t^{2 - \alpha }}{ U}(t)) = {f_i}(t,{ U}(t))\end{split}$

由引理6和式(11)可知,

$ \begin{split}&|{g_{i1}}(t - \tau )\left( {{f_i}(t,{{ U}_m}(t)) - {f_i}(t,{ U}(t))} \right)| \leqslant\\ &\quad 2\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm {\rm e}}^{(1 - {\lambda _i})}}\right)\left( {{k_{i0}} + {t^{\alpha - 2}}({k_{i1}}||{u_1}|| + \cdots + {k_{in}}||{u_n}||)} \right)\end{split} $

由Lebesgue控制收敛定理可得

$ \begin{split} &\mathop {\lim }\limits_{m \to \infty } \;||{T_i}{{ U}_m} - {T_i}{ U}|| = \mathop {\lim }\limits_{m \to \infty } \mathop {\sup }\limits_{t \in (0,1]} \;{t^{2 - \alpha }}|{T_i}{{ U}_m} - {T_i}{ U}| =\\ &\quad \mathop {\lim }\limits_{m \to \infty } \mathop {\sup }\limits_{t \in (0,1]} {t^{2 - \alpha }}\Bigg( {\int_0^t {{g_{i1}}(t \!-\! \tau )|{f_i}(\tau ,{{ U}_m}(\tau ))} \!-\! {f_i}(\tau ,{ U}(\tau ))|{\rm d} \tau } + \\ &\quad \frac{{{g_{i2}}(1){g_{i3}}(t) \!-\! {g_{i3}}(1){g_{i2}}(t)}}{{{\varDelta _i}}}\int_0^{{\eta _i}} {{g_{i1}}({\eta _i} \!-\! \tau )|{f_i}(\tau ,{{ U}_m}(\tau ))} - \\ &\quad{f_i}(\tau ,{ U}(\tau ))|{\rm d} \tau + \frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}} {\text{·}}\\ &\quad{\int_0^1 {{g_{i1}}(1 - \tau )|{f_i}(\tau ,{{ U}_m}(\tau ))} - {f_i}(\tau ,{ U}(\tau ))|{\rm d} \tau } \Bigg) = 0 \end{split} $

$\mathop {\lim }\limits_{m \to \infty }\; ||T{{ U}_m} - T{ U}|{|_E} \to 0$ ,则算子 $T$ 是连续算子。

(b) $T$ 是相对列紧。

首先证明算子 $T$ E上一致有界。令 $\varOmega \subset E$ 有界,对任意 ${ U} \in \varOmega $ ,存在 $M > 0$ ,使得 $||{ U}|{|_\varOmega } \leqslant M$ 。由引理6可知,

$|{g_{11}}(t)| < \frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _1})}}$

由式(11)可得

$\begin{split} &|{f_i}(t,{ U}(t))|\leqslant \\ &\quad{k_{i0}} + {t^{\alpha - 2}}({k_{i1}}||{u_1}|| + {k_{i2}}||{u_2}|| + \cdots + {k_{in}}||{u_n}||) \leqslant \\ & \quad{k_{i0}} + M{t^{\alpha - 2}}\max \;\;\{ {k_{i1}},{k_{i2}}, \cdots ,{k_{in}}\} \end{split} $ (12)

对任意 ${ U} \in \varOmega ,{\rm{ }}t \in [0,1]$ ,结合式(12),有

$\begin{split} & {\rm{ |}}{t^{2 - \alpha }}{T_i}({ U}(t))| \leqslant \int_0^t {|{g_{i1}}(t - \tau )} {f_i}(\tau ,{ U}(\tau ))|{\rm d} \tau + \left|{t^{2 - \alpha }} \frac{{{g_{i2}}(1){g_{i3}}(t) - {g_{i3}}(1){g_{i2}}(t)}}{{{\varDelta _i}}}\right|\int_0^{{\eta _i}} {|{g_{i1}}({\eta _i} - \tau ){f_i}(\tau ,{ U}(\tau )} )|{\rm d} \tau + \\ &\quad \left|{t^{2 - \alpha }} \frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}}\right|\int_0^1 {|{g_{i1}}(1 - \tau )} {f_i}(\tau ,{ U}(\tau ))|{\rm d} \tau \leqslant \\ & \quad \left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left( {\int_0^1 {({k_{i0}} + M{\tau ^{\alpha - 2}}\max\; \{ {k_{i1}},{k_{i2}}, \cdots ,{k_{in}}\} )} {\rm d} \tau } \right. + {l_{i1}}\int_0^{{\eta _i}} {({k_{i0}} + M{\tau ^{\alpha - 2}}\max\; \{ {k_{i1}},{k_{i2}}, \cdots ,{k_{in}}\} )} {\rm d} \tau+ \\ &\quad {l_{i2}}\left. {\int_0^1 {({k_{i0}} + M{\tau ^{\alpha - 2}}\max\; \{ {k_{i1}},{k_{i2}}, \cdots ,{k_{in}}\} )} {\rm d} \tau } \right) \leqslant (1 + {\eta _i}{l_{i1}} + {l_{i2}})\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left({k_{i0}} + \frac{M}{{\alpha - 1}}\max\; \{ {k_{i1}},{k_{i2}}, \cdots ,{k_{in}}\} \right) \end{split} $

所以,对任意 ${ U} \in \varOmega ,{\rm{ }}t \in [0,1]$ ,有

$\begin{split}&||{T_i}({ U})|| \leqslant (1 + {\eta _i}{l_{i1}} + {l_{i2}})\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right){\text{·}}\\ &\qquad\left({k_{i0}} + \frac{M}{{\alpha - 1}}\max\;\; \{ {k_{i1}},{k_{i2}}, \cdots ,{k_{in}}\} \right)\end{split}$ (13)

由不等式(13)可得

$\begin{split} ||T({ U}) &|{|_E} = \sum\limits_{i = 1}^n {||{T_i}({ U})||} \leqslant \hspace{90pt}\\ &\sum\limits_{i = 1}^n {(1 + {\eta _i}{l_{i1}} + {l_{i2}})\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right){\text{·}}}\\ &{\left({k_{i0}} + \frac{M}{{\alpha - 1}}\max\;\; \{ {k_{i1}},{k_{i2}}, \cdots ,{k_{in}}\} \right)} \end{split} $

因此, 算子 $T$ 一致有界。

然后再证算子 $T$ 等度连续。只需证明算子 ${T_i}$ 等度连续。

函数 ${g_{i1}}(t),\;{t^{2 - \alpha }}{g_{i2}}(t),\;{t^{2 - \alpha }}{g_{i3}}(t)$ 在[0,1]上连续,所以,函数 ${g_{i1}}(t),\;{t^{2 - \alpha }}{g_{i2}}(t),\;{t^{2 - \alpha }}{g_{i3}}(t)$ 在[0,1]上一致连续,即对任意 $\varepsilon > 0$ ,存在常数 $\delta > 0$ ,当 ${t_1},{t_2} \in $ $ [0,1]$ ${t_1} < {t_2}$ ${\rm{|}}{t_2} - {t_1}{\rm{| < }}\delta $ 时,都有

$ \quad\begin{split} &|{g_{i1}}({t_2} - \tau ) - {g_{i1}}({t_1} - \tau )| < \frac{\varepsilon }{{5({k_{i0}} + M{{(\alpha - 1)}^{ - 1}}\max\; \{ {k_{i1}}, \cdots ,{k_{in}}\} )}} \\ &\quad |t_2^{\alpha - 1} -t_1^{\alpha - 1}| < \frac{{(\alpha - 1)\varepsilon }}{{5({\Gamma ^{ - 1}}(\alpha ) + {{\rm e}^{(1 - {\lambda _i})}})M\max\; \{ {k_{i1}}, \cdots ,{k_{in}}\} }}\\ & \quad|t_2^{2 - \alpha }{g_{i2}}({t_2}) - t_1^{2 - \alpha }{g_{i2}}({t_1})| <\frac{{|{\varDelta _i}|{{({\eta _i}|{g_{i3}}(1)| + |{g_{i3}}({\eta _i})|)}^{ - 1}}\varepsilon }}{{5({\Gamma ^{ - 1}}(\alpha ) + {{\rm e}^{(1 - {\lambda _i})}})({k_{i0}} + M{{(\alpha - 1)}^{ - 1}}\max\; \{ {k_{i1}}, \cdots ,{k_{in}}\} )}} \\ &\quad|t_2^{2 - \alpha }{g_{i3}}({t_2}) - t_1^{2 - \alpha }{g_{i3}}({t_1})| < \frac{{|{\varDelta _i}|{{({\eta _i}|{g_{i2}}(1)| + |{g_{i2}}({\eta _i})|)}^{ - 1}}\varepsilon }}{{5({\Gamma ^{ - 1}}(\alpha ) + {{\rm e}^{(1 - {\lambda _i})}})({k_{i0}} + M{{(\alpha - 1)}^{ - 1}}\max\; \{ {k_{i1}}, \cdots ,{k_{in}}\} )}} \end{split} $

所以,对上述的 $\varepsilon > 0$ ,存在常数 $\delta \in ( {0,\varepsilon {{(5{k_{i0}}({\Gamma ^{ - 1}}(\alpha ) +}}}$ $ {{{{{\rm e}^{(1 - {\lambda _i})}}))}^{ - 1}}} ) $ , 当 ${t_1},{t_2} \in [0,1]$ , ${t_1} < {t_2}$ , ${\rm{|}}{t_2} - {t_1}{\rm{| < }}\delta $ ,则有

$\begin{split} |t_2^{2 - \alpha }&{T_i}({ U})({t_2}) - t_1^{2 - \alpha }{T_i}({ U})({t_1})|\leqslant \int_0^{{t_1}} {|\left( {{g_{i1}}({t_2} - \tau ) - {g_{i1}}({t_1} - \tau )} \right)} {f_i}(\tau ,{ U}(\tau ))|{\rm d}\tau + \\ &\int_{{t_1}}^{{t_2}} {|{g_{i1}}({t_2} - \tau )} {f_i}(\tau ,{ U}(\tau ))|{\rm d}\tau + |{g_{i2}}(1)( {t_2^{2 - \alpha }{g_{i3}}({t_2}) -}{ t_1^{2 - \alpha }{g_{i3}}({t_1})} ) - {g_{i3}}(1)( {t_2^{2 - \alpha }{g_{i2}}({t_2}) -t_1^{2 - \alpha }{g_{i2}}({t_1})} )| {\text{·}} \\ &\frac{1}{{|{\varDelta _i}|}}\int_0^{{\eta _i}} {|{g_{i1}}({\eta _i} - \tau )} {f_i}(\tau ,{ U}(\tau ))|{\rm d}\tau + |{g_{i3}}({\eta _i})(t_2^{2 - \alpha }{g_{i2}}({t_2}) - t_1^{2 - \alpha }{g_{i2}}({t_1})) - {g_{i2}}({\eta _i})(t_2^{2 - \alpha }{g_{i3}}({t_2}) - t_1^{2 - \alpha }{g_{i3}}({t_1}))| {\text{·}}\\ &\frac{1}{{|{\varDelta _i}|}}\int_0^1 {|{g_{i1}}(1 - \tau )} {f_i}(\tau ,{ U}(\tau ))|{\rm d}\tau\leqslant \int_0^1 {|{g_{i1}}({t_2} - \tau ) - {g_{i1}}({t_1} - \tau )|({k_{i0}} + M{\tau ^{\alpha - 1}}\max\; \{ {k_{i1}}, \cdots ,{k_{in}}\} )} {\mathop{\rm d}\nolimits} \tau+ \\ & \int_{{t_1}}^{{t_2}} {|{g_{i1}}({t_2} - \tau )|({k_{i0}} + M{\tau ^{\alpha - 1}}\max\; \{ {k_{i1}}, \cdots ,{k_{in}}\} )} {\mathop{\rm d}\nolimits} \tau +\\ &\left( {|{g_{i2}}(1)(t_2^{2 - \alpha }{g_{i3}}({t_2}) - t_1^{2 - \alpha }{g_{i3}}({t_1}))| + |{g_{i3}}(1)(t_2^{2 - \alpha }{g_{i2}}({t_2}) - t_1^{2 - \alpha }{g_{i2}}({t_1}))|} \right) {\text{·}}\\ &\frac{1}{{|{\varDelta _i}|}}\int_0^{{\eta _i}} {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)({k_{i0}} + M{\tau ^{\alpha - 1}}\max\; \{ {k_{i1}}, \cdots ,{k_{in}}\} )} {\mathop{\rm d}\nolimits} \tau+ \\ &\left( {|{g_{i3}}({\eta _i})(t_2^{2 - \alpha }{g_{i2}}({t_2}) - t_1^{2 - \alpha }{g_{i2}}({t_1}))| + |{g_{i2}}({\eta _i})(t_2^{2 - \alpha }{g_{i3}}({t_2}) - t_1^{2 - \alpha }{g_{i3}}({t_1}))|} \right) {\text{·}}\\ &\frac{1}{{|{\varDelta _i}|}}\int_0^1 {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)({k_{i0}} + M{\tau ^{\alpha - 1}}\max\; \{ {k_{i1}}, \cdots ,{k_{in}}\} )} {\mathop{\rm d}\nolimits} \tau \leqslant \frac{1}{5}\varepsilon + \frac{1}{5}\varepsilon + \frac{1}{5}\varepsilon + \frac{1}{5}\varepsilon + \frac{1}{5}\varepsilon = \varepsilon \end{split}$

因此,算子 $T$ 等度连续。由Arzela-Ascoli定理可知,算子 $T$ 相对列紧。又因为算子 $T$ 是连续算子,所以,算子 $T$ 是全连续的。

b. 记 $V(T) \!\!=\!\! \{ { U} \!\in\! E:{ U} \!=\! \mu T{ U},$ $0 \!<\! \mu \!<\! 1\} $ ,令 ${ U} \!\in \!\!$ $ V(T)$ ,则 ${ U} = \mu T{ U}$ 。对任意 $t \in [0,1]$ ,有 $ {u_i}(t) =$ $ \mu {T_i}({ U}(t))$

由式(8)和式(11)可知,

$\begin{split} &{\rm{|}}{t^{2 - \alpha }}{u_i}{\rm{(}}t{\rm{)| = |}}{t^{2 - \alpha }}\mu {T_i}({ U}(t))|\leqslant \int_0^t {|{g_{i1}}(t - \tau )} {f_i}(\tau ,{ U}(\tau ))|\operatorname{d} \tau + \\ &\quad\left|{t^{2 - \alpha }} \frac{{{g_{i2}}(1){g_{i3}}(t) - {g_{i3}}(1){g_{12}}(t)}}{{{\varDelta _i}}}\right|\int_0^{{\eta _i}} {|{g_{i1}}({\eta _i} - \tau ){f_i}(\tau ,{ U}(\tau )} )|\operatorname{d} \tau + \\ &\quad \left|{t^{2 - \alpha }} \frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}}\right|\int_0^1 |{{g_{i1}}(1 - \tau )} {f_i}(\tau ,{ U}(\tau ))|\operatorname{d} \tau \leqslant\\ &\quad\int_0^1 {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left( {{k_{i0}} + {\tau ^{\alpha - 2}}({k_{i1}}||{u_1}|| + {k_{i2}}||{u_2}|| + \cdots + {k_{in}}||{u_n}||)}\right)\operatorname{d} \tau }+ \\ &\quad {l_{i1}}\int_0^{{\eta _i}} {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left( {{k_{i0}} + {\tau ^{\alpha - 2}}({k_{i1}}||{u_1}|| + {k_{i2}}||{u_2}|| + \cdots + {k_{in}}||{u_n}||)} \right){\rm d} \tau } + \\ &\quad {l_{i2}}\int_0^1 {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left( {{k_{i0}} + {\tau ^{\alpha - 2}}({k_{i1}}||{u_1}|| + {k_{i2}}||{u_2}|| + \cdots + {k_{in}}||{u_n}||)} \right){\rm d} \tau } = \\ &\quad \left (\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left( {{k_{i0}}(1 + {\eta _i}{l_{i1}} + {l_{i2}}) + \frac{{{k_{i1}}}}{{\alpha - 1}}(1 + {\eta _i}{l_{i1}} + {l_{i2}})||{u_1}|| + \cdots } +{\frac{{{k_{in}}}}{{\alpha - 1}}(1 + {\eta _i}{l_{i1}} + {l_{i2}})||{u_n}||} \right)=\\ &\quad {\gamma _i}{\theta _i}\left({k_{i0}} + \frac{{{k_{i1}}}}{{\alpha - 1}}||{u_1}|| + \cdots + \frac{{{k_{in}}}}{{\alpha - 1}}||{u_n}||\right) \end{split} $
$\begin{gathered} \end{gathered} $

因此

$\qquad||{u_i}|| \leqslant {\gamma _i}{\theta _i}\left({k_{i0}} + \frac{{{k_{i1}}}}{{\alpha - 1}}||{u_1}|| + \cdots + \frac{{{k_{in}}}}{{\alpha - 1}}||{u_n}||\right)\!\!\!\!\!\!\!\!\!\!$ (14)

由式(14)可得

$\begin{split} & ||{u_1}|| + ||{u_2}|| + \cdots + ||{u_n}|| \leqslant\\ &\quad({\gamma _1}{\theta _1}{k_{10}} + {\gamma _2}{\theta _2}{k_{20}} + \cdots + {\gamma _n}{\theta _n}{k_{n0}}) + \\ &\quad\frac{1}{{\alpha - 1}}({\gamma _1}{\theta _1}{k_{11}} + {\gamma _2}{\theta _2}{k_{21}} + \cdots + {\gamma _n}{\theta _n}{k_{n1}})||{u_1}|| + \cdots + \\ &\quad\frac{1}{{\alpha - 1}}({\gamma _1}{\theta _1}{k_{1n}} + {\gamma _2}{\theta _2}{k_{2n}} + \cdots + {\gamma _n}{\theta _n}{k_{nn}})||{u_n}|| =\\ &\quad {\varPhi _0} + \max\; \{ {\varPhi _1},{\varPhi _2}, \cdots ,{\varPhi _n}\} (||{u_1}|| + \cdots + ||{u_n}||) \end{split} $

所以,

$||{ U}|{|_E} = ||{u_1}|| + \cdots + ||{u_n}|| \leqslant \frac{{{\varPhi _0}}}{{1 - \max \;\;\{ {\varPhi _1},{\varPhi _2}, \cdots ,{\varPhi _n}\} }}$

即证得集合 $V$ 是有界集。因此,由引理9可知,算子 $T$ 至少存在1个不动点。所以,边值问题(1)至少存在1个解。

证毕。

接下来证明边值问题(1)解的唯一性,采用Banach压缩映射原理。

为了证明的方便,引入一些记号:

${\omega _i} = \frac{1}{{\alpha - 1}}({\gamma _1}{\theta _1}{N_{1i}} + {\gamma _2}{\theta _2}{N_{2i}} + \cdots + {\gamma _n}{\theta _n}{N_{ni}})$ (15)
$ \qquad\qquad\quad{\xi _i} = \frac{{{\gamma _i}{\theta _i}}}{{\alpha - 1}}({N_{i1}} + {N_{i2}} + \cdots + {N_{in}}) $ (16)

定理2  令 ${f_i}:[0,1] \times {\mathbb{R}^n} \to \mathbb{R}$ 是连续函数,设 ${\varDelta _i} \ne 0$ ,存在实数 ${N_{ij}} \geqslant 0$ $i,j = 1,2, \cdots ,n$ , 对任意 $t \in [0,1],{\rm{ }}{u_i}(t),{\nu _i}(t) \in E$ ,使得

$|{f_i}(t,{u_1}, \cdots ,{u_n}) - {f_i}(t,{\nu _1}, \cdots ,{\nu _n})| \leqslant \sum\limits_{j = 1}^n {{N_{ij}}|{u_j} - {v_j}|}$

${\omega _1} + {\omega _2} + \cdots + {\omega _n} < 1$ ,其中, ${\omega _i}$ 是由式(15)定义的,则有:

a. 边值问题(1)在[0, 1]上有唯一解 ${{ U}^*}(t)$

b. 对任意初始点 ${{ U}_0} \in E$ ,令

$\begin{split}&{{ U}_1} = T{{ U}_0},{\rm{ }}{{ U}_2} = T{{ U}_1} = \\ &\quad {T^2}{{ U}_0}, \cdots ,{{ U}_m} = T{{ U}_{m - 1}} = {T^m}{{ U}_0}\end{split}$ (17)

边值问题(1)的解 ${{ U}^*}(t) = \mathop {\lim }\limits_{m \to \infty }\; {{ U}_m}(t)$ , 有误差估计

$||{{ U}^*} - {{ U}_m}|{|_E} \leqslant \frac{{{{({\omega _1} + {\omega _2} + \cdots + {\omega _n})}^m}}}{{1 - ({\omega _1} + {\omega _2} + \cdots + {\omega _n})}}||{{ U}_1} - {{ U}_0}|{|_E}$

证明  设 $\mathop {\sup }\limits_{t \in (0,1]}\; |{f_i}(t,0,0, \cdots ,0)| = {\rho _i}$ ,使得

$r \geqslant \max\; \left\{ \frac{{n{\gamma _1}{\theta _1}{\rho _1}}}{{1 - n{\xi _1}}},\frac{{n{\gamma _2}{\theta _2}{\rho _2}}}{{1 - n{\xi _2}}}, \cdots ,\frac{{n{\gamma _n}{\theta _n}{\rho _n}}}{{1 - n{\xi _n}}}\right\}$

先证 $T{B_r} \subset {B_r}$ ,其中, ${B_r} = \{ U \in E:||U|{|_E} \leqslant r\} $ 。对任意 ${ U}(t) \in {B_r} $ ,则有

$\begin{split} &|{t^{2 - \alpha }}{T_i}({u_1}(t), \cdots ,{u_n}(t))| \leqslant \int_0^t {|{g_{i1}}(t - \tau )|} {\rm{ }}\left( {|{f_i}(\tau ,{u_1}(\tau ), \cdots ,{u_n}(\tau )) - {f_i}(\tau ,0, \cdots ,0)| + |{f_i}(\tau ,0, \cdots ,0)|} \right){\rm d} \tau + \\ &\quad \left|{t^{2 - \alpha }} \frac{{{g_{i2}}(1){g_{i3}}(t) - {g_{i3}}(1){g_{i2}}(t)}}{{{\varDelta _i}}}\right|\int_0^{{\eta _i}} {|{g_{i1}}({\eta _i} - \tau )\left( {{f_i}(\tau ,{u_1}(\tau ), \cdots ,{u_n}(\tau )) - {f_i}(\tau ,0, \cdots ,0)} \right)|} {\rm d} \tau + \\ & \quad \left|{t^{2 - \alpha }} \frac{{{g_{i2}}(1){g_{i3}}(t) - {g_{i3}}(1){g_{i2}}(t)}}{{{\varDelta _i}}}\right|\int_0^{{\eta _i}} {|{g_{i1}}({\eta _i} - \tau ){f_i}(\tau ,0, \cdots ,0)|} {\rm d} \tau + \\ & \quad \left|{t^{2 - \alpha }}\frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}}\right| \int_0^1 {|{g_{i1}}(1 - \tau )} \left( {{f_i}(\tau ,{u_1}(\tau ), \cdots ,{u_n}(\tau )) - {f_i}(\tau ,0, \cdots ,0)} \right)|{\rm d} \tau + \\ &\quad \left|{t^{2 - \alpha }} \frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}}\right|\int_0^1 {|{g_{i1}}(1 - \tau ){f_i}(\tau ,0, \cdots ,0)|} {\rm d} \tau \leqslant {\rho _i}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)(1 + {\eta _i}{l_{i1}} + {l_{i2}}) +\\ &\quad \int_0^t {\left(\frac{1}{{\Gamma (\alpha )}} \!\!+\! {{\rm e}^{(1 - {\lambda _i})}}\right)\left(\sum\limits_{j \!=\! 1}^n {{N_{ij}}\!|\!{u_j}(\tau )\!|\!} \right)} {\rm d} \tau \!+\! {l_{i1}}\int_0^{{\eta _i}} {\left(\frac{1}{{\Gamma (\alpha )}} \!+\! {{\rm e}^{(1 \!-\! {\lambda _i})}}\right)\left(\sum\limits_{j = 1}^n {{N_{ij}}|{u_j}(\tau )|} \right)} {\rm d} \tau \!+\! {l_{i2}}\int_0^1 {\left(\frac{1}{{\Gamma (\alpha )}} \!+\! {{\rm e}^{(1 \!-\! {\lambda _i})}}\right)\left(\sum\limits_{j = 1}^n {{N_{ij}}|{u_j}(\tau )|} \right)} {\rm d} \tau \leqslant \\ & \quad {\rho _i}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)(1 + {\eta _i}{l_{i1}} + {l_{i2}}) + \int_0^1 {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)} {\tau ^{\alpha - 2}}\left(\sum\limits_{j = 1}^n {{N_{ij}}{\tau ^{2 - \alpha }}|{u_j}(\tau )|} \right){\rm d} \tau + \\ & \quad {l_{i1}}\int_0^{{\eta _i}} {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right){\tau ^{\alpha - 2}}\left(\sum\limits_{j = 1}^n {{N_{ij}}{\tau ^{2 - \alpha }}|{u_j}(\tau )|} \right)} {\rm d} \tau + {l_{i2}}\int_0^1 {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right){\tau ^{\alpha - 2}}\left(\sum\limits_{j = 1}^n {{N_{ij}}{\tau ^{2 - \alpha }}|{u_j}(\tau )|} \right)} {\rm d} \tau\leqslant \\ & \quad {\rho _i}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)(1 + {\eta _i}{l_{i1}} + {l_{i2}}) + \frac{1}{{\alpha - 1}}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left(\sum\limits_{j = 1}^n {{N_{ij}}||{u_j}||} \right) + \\ & \quad \frac{{{\eta _i}{l_{i1}}}}{{\alpha - 1}}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left(\sum\limits_{j = 1}^n {{N_{ij}}||{u_j}||} \right) + \frac{{{l_{i2}}}}{{\alpha - 1}}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)\left(\sum\limits_{j = 1}^n {{N_{ij}}||{u_j}||} \right) \leqslant \\ &\quad \left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)(1 + {\eta _i}{l_{i1}} + {l_{i2}})\left(\frac{1}{{\alpha - 1}}({N_{i1}} + {N_{i2}} + \cdots + {N_{in}})r + {\rho _i}\right)= {\gamma _i}{\theta _i}\left( {\frac{1}{{\alpha - 1}}({N_{i1}} + {N_{i2}} + \cdots + {N_{in}})r + {\rho _i}} \right) \end{split} $

因此,

$||{T_i}({ U})|| \leqslant {\gamma _i}{\theta _i}\left( {\frac{1}{{\alpha - 1}}({N_{i1}} + {N_{i2}} + \cdots + {N_{in}})r + {\rho _i}} \right) \leqslant \frac{r}{n}$

$ ||T({ U})|{|_E}=\left|\sum\limits_{i = 1}^n {{T_i}({ U})}\right| \leqslant \sum\limits_{i = 1}^n {{\gamma _i}{\theta _i}\left( {\frac{1}{{\alpha - 1}}({N_{i1}} + {N_{i2}} + \cdots + {N_{in}})r + {\rho _i}} \right)}\leqslant \frac{r}{n} + \cdots + \frac{r}{n} = r $

所以, $T{B_r} \subset {B_r} $

接下来证明算子 $T$ 是压缩的。对任意 $t \in [0,1], $ ${{ U}}(t) = {({u_1}(t), \cdots ,{u_n}(t))^{\rm T}} \in E,{ V}(t) = {({\nu _1}(t), \cdots ,{\nu _n}(t))^{\rm T}} \!\in\! E$ ,则有

$\begin{split} &|{t^{2 - \alpha }}{T_i}({ U})(t) - {t^{2 - \alpha }}{T_i}({ V})(t)|\leqslant \int_0^t {|{g_{i1}}(t - \tau )} \left( {{f_i}(\tau ,{ U}(\tau )) - {f_i}(\tau ,{ V}(\tau ))} \right)|{\rm d}\tau+ \\ &\quad \left|{t^{2 - \alpha }} \frac{{{g_{i2}}(1){g_{i3}}(t) - {g_{i3}}(1){g_{i2}}(t)}}{{{\varDelta _i}}}\right|\int_0^{{\eta _i}} {|{g_{i1}}({\eta _i} - \tau )} \left( {{f_i}(\tau ,{ U}(\tau )) - {f_i}(\tau ,{ V}(\tau ))} \right)|{\rm d}\tau +\\ &\quad \left|{t^{2 - \alpha }} \frac{{{g_{i3}}({\eta _i}){g_{i2}}(t) - {g_{i2}}({\eta _i}){g_{i3}}(t)}}{{{\varDelta _i}}}\right|\int_0^1 {|{g_{i1}}(1 - \tau )} \left( {{f_i}(\tau ,{ U}(\tau )) - {f_i}(\tau ,{ V}(\tau ))} \right)|{\rm d}\tau\leqslant \\ &\quad \int_0^1 {\left(\frac{1}{{\Gamma (\alpha )}} \!+\! {{\rm e}^{(1 - {\lambda _i})}}\right){\tau ^{\alpha - 2}}}\left(\sum\limits_{j = 1}^n {{N_{ij}}{\tau ^{2 - \alpha }}|{u_j} \!-\! {v_j}|}\right){\rm d}\tau+ {l_{i1}}\int_0^{{\eta _i}} {\left(\frac{1}{{\Gamma (\alpha )}} \!+\! {{\rm e}^{(1 - {\lambda _i})}}\right)}{\tau ^{\alpha - 2}}\left(\sum\limits_{j = 1}^n {{N_{ij}}{\tau ^{2 - \alpha }}|{u_j} \!-\! {v_j}|} \right){\rm d}\tau +\\ &\quad {l_{i2}}\int_0^1 {\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)}{\tau ^{\alpha - 2}}\left(\sum\limits_{j = 1}^n {{N_{ij}}{\tau ^{2 - \alpha }}|{u_j} - {v_j}|} \right){\rm d}\tau\leqslant \\ &\quad\frac{1}{{\alpha - 1}}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)({N_{i1}}||{u_1} - {\nu _1}|| + {N_{i2}}||{u_2} - {\nu _2}|| + \cdots + {N_{in}}||{u_n} - {\nu _n}||) + \\ &\quad \frac{{{\eta _i}{l_{i1}}}}{{\alpha - 1}}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)({N_{i1}}||{u_1} - {\nu _1}|| + {N_{i2}}||{u_2} - {\nu _2}|| + \cdots + {N_{in}}||{u_n} - {\nu _n}||) + \\ &\quad \frac{{{l_{i2}}}}{{\alpha - 1}}\left(\frac{1}{{\Gamma (\alpha )}} + {{\rm e}^{(1 - {\lambda _i})}}\right)({N_{i1}}||{u_1} - {\nu _1}|| + {N_{i2}}||{u_2} - {\nu _2}|| + \cdots + {N_{in}}||{u_n} - {\nu _n}||) = \\ &\quad \frac{{{\gamma _i}{\theta _i}}}{{\alpha - 1}}({N_{i1}}||{u_1} - {\nu _1}|| + {N_{i2}}||{u_2} - {\nu _2}|| + \cdots + {N_{in}}||{u_n} - {\nu _n}||) \end{split} $

因此,对任意 $t \in [0,1],{{ U}}(t) = {({u_1}(t), \cdots ,{u_n}(t))^{\rm T}},$ ${ V}(t) = {({\nu _1}(t), \cdots ,{\nu _n}(t))^{\rm T}} \in E$ ,则有

$ |{t^{2 - \alpha }}{T_i}({ U})(t) - {t^{2 - \alpha }}{T_i}({ V})(t)| \leqslant \frac{{{\gamma _i}{\theta _i}}}{{\alpha - 1}}({N_{i1}}||{u_1} - {\nu _1}|| + {N_{i2}}||{u_2} - {\nu _2}|| + \cdots + {N_{in}}||{u_n} - {\nu _n}||) $ (18)

由式(18)可知,

$ \begin{split}&{\rm{||}}T({ U}) - T({ V})|{|_E} \leqslant \frac{1}{{\alpha - 1}}({\gamma _1}{\theta _1}{N_{11}} + {\gamma _2}{\theta _2}{N_{21}} + \cdots + {\gamma _n}{\theta _n}{N_{n1}})||{u_1} - {u_1}|| + \cdots + \hspace{100pt}\\ &\qquad\frac{1}{{\alpha - 1}}({\gamma _1}{\theta _1}{N_{1n}} + {\gamma _2}{\theta _2}{N_{2n}} + \cdots + {\gamma _n}{\theta _n}{N_{nn}})||{u_n} - {\nu _n}|| \leqslant ({\omega _1} + \cdots + {\omega _n})(||{u_1} - {\nu _1}|| + \cdots + ||{u_n} - {\nu _n}||)\end{split} $ (19)

因为, ${\omega _1} \!+\! {\omega _2} \!+\! \cdots \!+\! {\omega _n} \!<\! 1$ ,所以,算子 $T$ 是压缩算子。由Banach压缩映射定理可知,算子 $T$ 有唯一的不动点,所以,边值问题(1)在 $t \in [0,1]$ 上有唯一解 ${{ U}^*}(t)$

对任意的 $k > m$ ,有

$\begin{split} &{\rm{ ||}}{{ U}_m} - {{ U}_k}|{|_E} \leqslant ||{{ U}_m} - {{ U}_{m + 1}}|{|_E} + ||{{ U}_{m + 1}} - {{ U}_{m + 2}}|{|_E} + \cdots + ||{{ U}_{k - 1}} - {{ U}_k}|{|_E} = \\ &\quad ||T{{ U}_{m - 1}} - T{{ U}_m}|{|_E} + ||T{{ U}_m} - T{{ U}_{m + 1}}|{|_E} + \cdots + ||T{{ U}_{k - 2}} - T{{ U}_{k - 1}}|{|_E} \leqslant \\ &\quad \left( {{{({\omega _1} + {\omega _2} + \cdots + {\omega _n})}^m} + {{({\omega _1} + {\omega _2} + \cdots + {\omega _n})}^{m + 1}} + \cdots + {{({\omega _1} + {\omega _2} + \cdots + {\omega _n})}^{k - 1}}} \right)||{{ U}_1} - {{ U}_0}|{|_E} = \\ &\quad {({\omega _1} + {\omega _2} + \cdots + {\omega _n})^m}\left( {1 + ({\omega _1} + {\omega _2} + \cdots + {\omega _n}) + \cdots + {{({\omega _1} + {\omega _2} + \cdots + {\omega _n})}^{k - m - 1}}} \right)||{{ U}_1} - {{ U}_0}|{|_E} = \\ & \quad {({\omega _1} + {\omega _2} + \cdots + {\omega _n})^m}\frac{{1 - {{({\omega _1} + {\omega _2} + \cdots + {\omega _n})}^{k - m}}}}{{1 - ({\omega _1} + {\omega _2} + \cdots + {\omega _n})}}||{{ U}_1} - {{ U}_0}|{|_E} \leqslant \frac{{{{({\omega _1} + {\omega _2} + \cdots + {\omega _n})}^m}}}{{1 - ({\omega _1} + {\omega _2} + \cdots + {\omega _n})}}||{{ U}_1} - {{ U}_0}|{|_E} \end{split} $

又因为, ${\omega _1} + {\omega _2} + \cdots + {\omega _n} < 1$ ,得到迭代序列 $\{ {{ U}_m}\} $ 收敛,所以,存在极限 $\mathop { U}\limits^ - (t) = \mathop {\lim }\limits_{m \to \infty }\; {{ U}_m}(t)$

由三角不等式和式(19)可得

$\begin{split} &||\mathop { U}\limits^ - - T\mathop { U}\limits^ - |{|_E} \leqslant ||\mathop { U}\limits^ - - {{ U}_m}|{|_E} + {\rm{||}}{{ U}_m} - T\mathop { U}\limits^ - |{|_E} \leqslant \\ & \quad ||\mathop { U}\limits^ - - {{ U}_m}|{|_E} + ({\omega _1} + {\omega _2} + \cdots + {\omega _n})||{{ U}_{m - 1}} - \mathop { U}\limits^ - |{|_E} \end{split} $

因为, $\mathop { U}\limits^ - (t) = \mathop {\lim }\limits_{m \to \infty } \;{{ U}_m}$ ,所以,当 $m \to \infty $ 时,

$||\mathop { U}\limits^ - - {{ U}_m}|{|_E} + ({\omega _1} + {\omega _2} + \cdots + {\omega _n})||{{ U}_{m - 1}} - \mathop { U}\limits^ - |{|_E} \to 0$

得到 $||\mathop { U}\limits^ - - T\mathop { U}\limits^ - |{|_E}{\rm{ = }}0$ ,即 $\mathop { U}\limits^ - {\rm{ = }}T\mathop { U}\limits^ - $ 。由定理2可知,边值问题(1)存在唯一解 ${{ U}^*}$ ,所以,

${{ U}^*}{\rm{ = }}\mathop { U}\limits^ - $

迭代序列式(17)对任意的 ${{ U}_0} \in E$ 都收敛到T的唯一不动点 ${{ U}^*}$ ,且有误差估计

$||{{ U}^*} - {{ U}_m}|{|_E} \leqslant \frac{{{{({\omega _1} + {\omega _2} + \cdots + {\omega _n})}^m}}}{{1 - ({\omega _1} + {\omega _2} + \cdots + {\omega _n})}}||{{ U}_1} - {{ U}_0}|{|_E}$

证毕。

4 例 题

为了说明所得结论具有较好的适用性,考虑几个具体的问题。

例1  考虑分数阶微分方程组边值问题

$\left\{ \begin{split} &{{\rm D}^\alpha }{u_1}(t) + 0.99{{\rm D}^{\alpha - 1}}{u_1}(t) = {f_1}(t,{u_1}(t),{v_1}(t)),\\ &\quad 0 < t < 1 \\ & {{\rm D}^\alpha }{u_2}(t) + 0.98{{\rm D}^{\alpha - 1}}{u_2}(t) = {f_2}(t,{u_1}(t),{v_1}(t)),\\ &\quad 0 < t < 1 \\ & {u_1}({\eta _1}) = {u_1}(1) = 0\\ & {u_2}({\eta _2}) = {u_2}(1) = 0 \end{split} \right.$ (20)

其中, $\alpha {\rm{ = }}\dfrac{3}{2}$ , ${\lambda _1}{\rm{ = }}0.99,{\rm{ }}{\lambda _2} = 0.98$ 是(0, 1)上的2个正实数,取 ${\eta _1}{\rm{ = }}\dfrac{1}{2},{\rm{ }}{\eta _2}{\rm{ = }}\dfrac{1}{4}$

通过计算。得到

$\left\{\begin{align} & {\varDelta _1} \approx - 0.321\;394 \ne 0,{\rm{ }}\;\;{\varDelta _2} \approx - 0.235\;721 \ne 0\\ &{\gamma _1} \approx 2.138\;429,{\gamma _2} \approx 2.148\;581 \\ &{l_{11}} \approx 2.133\;16,{\rm{ }}{l_{12}} \approx 0.572\;013 \\ &{l_{21}} \approx 2.026\;437,{\rm{ }}{l_{22}} \approx 2.276\;976 \\ &{\theta _1} \approx 4.093\;02,{\rm{ }}{\theta _2} \approx 3.419\;979 \end{align} \right.$ (4.2)

$\begin{split} & {f_1}(t,{u_1},{u_2}) = \frac{{{t^2}}}{{900}}\left(1 + \frac{1}{{789}}{u_1} + \frac{1}{{596}}\sin\; {u_2}\right),\\ &\qquad\quad t \in [0,1],{\rm{ }}{u_1},{u_2} \in \mathbb{R} \\ & {f_2}(t,{u_1},{u_2}) = \frac{t}{{999}}\left(2 + \frac{1}{{900}}\sin\; {u_1} + \frac{1}{{127}}{\cos ^2}\;{u_2}\right),\\ &\qquad\quad t \in [0,1],{\rm{ }}{u_1},{u_2} \in \mathbb{R} \end{split} $

$\begin{split} & |{f_1}(t,{u_1},{u_2})| = \left|\frac{{{t^2}}}{{900}}\left(1 + \frac{1}{{789}}{u_1} + \frac{1}{{596}}\sin \;{u_2}\right)\right| \leqslant \\ &\qquad\quad 1 + \frac{1}{{789}}|{u_1}| + \frac{1}{{1\;200}}|{u_2}| \\ &|{f_2}(t,{u_1},{u_2})| = \left|\frac{t}{{999}}\left(2 + \frac{1}{{900}}\sin \;{u_1} + \frac{1}{{127}}{\cos ^2}\;{u_2}\right)\right| \leqslant\\ &\quad\qquad2 + \frac{1}{{900}}|{u_1}| + \frac{1}{{137}}|{u_2}| \end{split} $

并且, ${k_{11}} = \dfrac{1}{{789}},\;\;{k_{12}} = \dfrac{1}{{1\;200}},\;\;{k_{21}} = \dfrac{1}{{900}},\;\;{k_{22}} = \dfrac{1}{{137}} $

所以,

$\begin{gathered} \frac{1}{{\alpha - 1}}({\gamma _1}{\theta _1}{k_{11}} + {\gamma _1}{\theta _1}{k_{21}}) \approx 0.041\;636\;9 < 1 \\ \frac{1}{{\alpha - 1}}({\gamma _2}{\theta _2}{k_{12}} + {\gamma _2}{\theta _2}{k_{22}}) \approx 0.140\;376 < 1 \end{gathered} $

因此,所有的条件都满足定理1,所以,由定理1可知,微分方程组(20)至少存在1个解。

例2  在例1的基础上,只改变函数 ${f_1},{\rm{ }}{f_2}$ ,其他的条件保持不变, ${\varDelta _i},{\rm{ }}{l_{1i}},{\rm{ }}{l_{2i}},$ ${\gamma _i},{\rm{ }}{\theta _i}(i = 1,2)$ 是式(20)中的,其中, $\alpha {\rm{ = }}\dfrac{3}{2}$ 。令

$\begin{split} &{f_1}(t,{u_1},{u_2}) = 1 + \frac{{{t^2}}}{{790}}{u_1} + \frac{1}{{960}}\arctan\; {u_2},\\ &\quad\qquad t \in [0,1],{\rm{ }}{u_1},{u_2} \in \mathbb{R}\\ &{f_2}(t,{u_1},{u_2}) = 2 + \frac{t}{{460}}\sin\; {u_1} + \frac{5}{{239}}\cos\; {u_2},{\rm{ }}t \in [0,1],\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\\ &\quad\qquad {u_1},{u_2} \in \mathbb{R} \end{split} $ (22)

$\begin{gathered} |{f_1}(t,{u_1},{u_2}) - {f_1}(t,{v_1},{v_2})| \leqslant \frac{1}{{790}}{\rm{|}}{u_1} - {v_1}| + \frac{1}{{960}}{\rm{|}}{u_2} - {\nu _2}|\\ |{f_2}(t,{u_1},{u_2}) - {f_2}(t,{v_1},{v_2})| \leqslant \frac{1}{{460}}{\rm{|}}{u_1} - {v_1}| + \frac{5}{{239}}{\rm{|}}{u_2} - {\nu _2}| \end{gathered} $

并且, $ {N_{11}} = \dfrac{1}{{790}},{N_{12}} = \dfrac{1}{{960}},{N_{21}} = \dfrac{1}{{460}},{N_{22}} = \dfrac{5}{{239}}$

所以,

$\begin{split}&\frac{1}{{\alpha - 1}}[({\gamma _1}{\theta _1}{N_{11}} + {\gamma _2}{\theta _2}{N_{21}}) +\\ &\qquad ({\gamma _1}{\theta _1}{N_{12}} + {\gamma _2}{\theta _2}{N_{22}})] \approx 0.379\;794\end{split}$

所有的条件满足定理2,因此,微分方程组(20)有唯一解( ${f_1},{f_2}$ 是式(21)中给定的)。

对任意 ${{ U}_0} \!\!=\!\! {(0,{\rm{ }}0)^{\rm T}}$ ,则 ${{ U}_1}\! \!=\!\! {(0.041\;565,} $ ${\;0.043\;789)^{\rm T}}$ ,且有误差估计

$||{{ U}^*} - {{ U}_{200}}|| \leqslant 1.272\;61 \times {10^{ - 84}}||{{ U}_1} - {{ U}_0}||$
参考文献
[1]
BALEANU D, DIETHELM K, SCALAS E, et al. Fractional calculus: models and numerical methods[M]//LUO A C J. Series on Complexity, Nonlinearity and Chaos. Bostin: Word Scientific, 2012: 305–307.
[2]
DAS S. Functional fractional calculus for system identification and controls[M]. New York: Springer, 2008.
[3]
DJORDJEVIĆ V D, JARIĆ J, FABRY B, et al. Fractional derivatives embody essential features of cell rheological behavior[J]. Annals of Biomedical Engineering, 2003, 31(6): 692-699. DOI:10.1114/1.1574026
[4]
BAI Z B, LÜ H S. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2005, 311(2): 495-505. DOI:10.1016/j.jmaa.2005.02.052
[5]
胡雨欣, 寇春海, 葛富东. Banach空间中分数阶微分方程解的存在性[J]. 东华大学学报(自然科学版), 2015, 41(6): 867-872. DOI:10.3969/j.issn.1671-0444.2015.06.024
[6]
吴贵云, 刘锡平, 杨浩. 具有微分算子的分数阶微分方程边值问题解的存在性与唯一性[J]. 上海理工大学学报, 2015, 37(3): 205-209.
[7]
LIU X P, JIA M. Existence of solutions for the integral boundary value problems of fractional order impulsive differential equations[J]. Mathematical Methods in the Applied Sciences, 2016, 39(3): 475-487. DOI:10.1002/mma.v39.3
[8]
李燕, 刘锡平, 李晓晨, 等. 具逐项分数阶导数的积分边值问题正解的存在性[J]. 上海理工大学学报, 2016, 38(6): 511-516.
[9]
LIU X P, LI F F, JIA M, et al. Existence and uniqueness of the solutions for fractional differential equations with nonlinear boundary conditions[J]. Abstract and Applied Analysis, 2014, 2014: 758390.
[10]
JIA M, LIU X P. Three nonnegative solutions for fractional differential equations with integral boundary conditions[J]. Computers & Mathematics with Applications, 2011, 62(3): 1405-1412.
[11]
ALSAEDI A, ALJOUDI S, AHMAD B. Existence of solutions for Riemann-Liouvillle type coupled systems of fractional integro-differential equations and boundary conditions[J]. Electronic Journal of Differential Equations, 2016, 2016(211): 1-14.
[12]
周志恒, 韦煜明. 半无穷区间上具有共振的序列分数阶微分方程积分边值问题的可解性[J]. 应用数学, 2018, 31(3): 572-582. DOI:10.3969/j.issn.1006-6330.2018.03.013
[13]
MERAL F C, ROYSTON T J, MAGIN R. Fractional calculus in viscoelasticity: an experimental study[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(4): 939-945. DOI:10.1016/j.cnsns.2009.05.004
[14]
AHMAD B, LUCA R. Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions[J]. Chaos, Solitons & Fractals, 2017, 104: 378-388.
[15]
LI Y H, SANG Y B, ZHANG H Y. Solvability of a coupled system of nonlinear fractional differential equations with fractional integral conditions[J]. Journal of Applied Mathematics and Computing, 2016, 50(1/2): 73-91.
[16]
杨巧林. 复变函数与积分变换[M]. 北京: 机械工业出版社, 2007.
[17]
KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]//VON MILL J. North-Holland Mathematics Studies. Amsterdam: Elsevier, 2006: 1–523.
[18]
MCLENNAN A. Fixed point theorems[M]//DURLAUF S N, BLUME L E. The New Palgrave Dictionary of Economics. New York: Springer, 2005.