用户登录
期刊信息
  • 主管单位:
  • 上海市教育委员会
  • 主办单位:
  • 上海理工大学
  • 主  编:
  • 庄松林
  • 地  址:
  • 上海市军工路516号
  • 邮政编码:
  • 200093
  • 联系电话:
  • 021-55277251
  • 电子邮件:
  • xbzrb@usst.edu.cn
  • 国际标准刊号:
  • 1007-6735
  • 国内统一刊号:
  • 31-1739/T
  • 邮发代号:
  • 4-401
  • 单  价:
  • 15.00
  • 定  价:
  • 90.00
李聪,黄赛凯.多电极电解制备高铁酸盐及参数条件优化[J].上海理工大学学报,2022,44(4):326-332.
多电极电解制备高铁酸盐及参数条件优化
Preparation of ferrate by multi-electrode electrolysis and optimization of parameters
投稿时间:2022-07-03  
DOI:10.13255/j.cnki.jusst.20220703002
中文关键词:  多电极  高铁酸盐  电化学  优化  电流效率
英文关键词:multielectrode  ferrate  electrochemical  optimize  current efficiency
基金项目:国家自然科学基金资助项目(51778565);上海市自然科学基金资助项目(20ZR1438200)
作者单位
李聪 上海理工大学 环境与建筑学院上海200093 
黄赛凯 上海理工大学 环境与建筑学院上海200093 
摘要点击次数: 25
全文下载次数: 38
中文摘要:
      采用自制多电极高铁酸盐电化学装置,运用单一变量法研究了多个电解条件对高铁酸盐生成的影响,并对电解条件参数进行优化。结果表明,电解液流动性有利于阳极OH?的补充和氢气的外溢,有助于高铁酸盐的生成;电极板采用3阳极2阴极布置方式可提高电子传递效率和降低还原氢的分布,促进高铁酸盐的生成;极板间距可影响电路效率和析氢程度,进而影响高铁酸盐生成;电流密度适当增加可促进高铁酸盐的生成,而过高会导致析氧副反应增强,抑制高铁酸盐的生成;电解液温度的增加能够提高高铁酸盐生成速率,但也会降低其稳定性;电解液浓度增加促进高铁酸盐生成的同时,阳极钝化也会逐渐严重。采用多电极电解时最优极板间距为2 cm、电流密度55 mA/cm2、温度55 ℃、电解液浓度16 mol/L,在最优条件下高铁酸盐浓度为19 mmol/L,电流效率为66%。本次研究为进一步实现高铁酸盐多电极电解制备及应用提供了理论基础。
英文摘要:
      Using a self-made multi-electrode ferrate electrochemical device, the single-variable method was used to study the effects of multiple electrolysis conditions on the formation of ferrate, and the parameters of the electrolysis conditions were optimized. The results show that the fluidity of the electrolyte is beneficial to the replenishment of anode OH? and the overflow of hydrogen, which is conducive to the formation of ferrate; The arrangement of 3 anodes and 2 cathodes was adopted for the electrode plate, which can improve the electron transfer efficiency and reduce the distribution of reduced hydrogen, and promote the formation of ferrate. The spacing of electrode plates can affect the circuit efficiency and the degree of hydrogen evolution, which in turn affects the production of ferrate. Appropriate increase of current density can promote the formation of ferrate, while ecessively high current density will enhance the side reaction of oxygen evolution and inhibit the formation of ferrate. The increase of electrolyte temperature can increase the rate of ferrate formation, but also reduce its stability. The increase of electrolyte concentration promotes the formation of ferrate and the anode passivation will gradually become serious. When multi-electrode was used for electrolysis, the optimal plate spacing was 2 cm, the current density was 55 mA/cm2, the temperature was 55 ℃, and the electrolyte concentration was 16 mol/L. Under the optimal conditions, the ferrate concentration was 19 mmol/L and the current efficiency was 66%. This study can provide a theoretical basis for the further preparation and application of ferrate by multi-electrode electrolysis.
HTML   查看全文  查看/发表评论  下载PDF阅读器