用户登录
期刊信息
  • 主管单位:
  • 上海市教育委员会
  • 主办单位:
  • 上海理工大学
  • 主  编:
  • 庄松林
  • 地  址:
  • 上海市军工路516号
  • 邮政编码:
  • 200093
  • 联系电话:
  • 021-55277251
  • 电子邮件:
  • xbzrb@usst.edu.cn
  • 国际标准刊号:
  • 1007-6735
  • 国内统一刊号:
  • 31-1739/T
  • 邮发代号:
  • 4-401
  • 单  价:
  • 15.00
  • 定  价:
  • 90.00
张建肖,刘晓俊.Hadamard缺项幂级数及双曲完备极小曲面[J].上海理工大学学报,2022,44(4):364-367.
Hadamard缺项幂级数及双曲完备极小曲面
Power series with Hadamard gaps and hyperbolic complete minimal surfaces
投稿时间:2021-05-24  
DOI:10.13255/j.cnki.jusst.20210524002
中文关键词:  Hadamard缺项幂级数  发散曲线  完备极小曲面  Weierstrass表示对
英文关键词:power series with Hadamard gaps  divergence curve  completeminimal surface  Weierstrass representation pair
基金项目:国家自然科学基金资助项目(11871216)
作者单位E-mail
张建肖 上海理工大学 理学院上海 200093  
刘晓俊 上海理工大学 理学院上海 200093 xiaojunliu2007@hotmail.com 
摘要点击次数: 395
全文下载次数: 384
中文摘要:
      基于具有Hadamard缺项的特殊幂级数,研究了一类位于$\mathbb{R}^3 $中2个平行平面之间的双曲型完备极小曲面族。首先得到如下结果:若$h(z) = \displaystyle\sum\limits_{j = 1}^\infty {{a_j}{z^{{n_j}}}}$是一个具有Hadamard缺项的幂级数,其中,$z \in {\mathbb{C}}$,$j = 1,2, \cdots $,且满足给定的3个特殊条件,则对于单位圆盘 $ \Delta $内的任意发散曲线$ \gamma $,有$\displaystyle\int_\gamma {{{\left| {h'(z)} \right|}^2}\left| {{\rm{d}}z} \right|} = \infty$。同时列举出了满足上述条件的具体的解析函数,其次通过选择适当的Weierstrass表示对,并利用上述结论,构造出了位于$\mathbb{R}^3 $中2个平行平面之间的双曲型完备极小曲面族及其具体形式。
英文摘要:
      Based on the special power series with Hadamard gaps, a family of hyperbolic complete minimal surfaces located between two parallel planes in $ {\mathbb{R}^3} $ was studied. Firstly, the following results were obtained: Let $h(z) = \displaystyle \sum\limits_{j = 1}^\infty {{a_j}{z^{{n_j}}}}$ be a series with Hadamard gaps, where $ z \in \mathbb{C} $, $j = 1,2, \cdots $, and satisfy three given special conditions. Then for all divergent paths $ \gamma $ in the unit disk $ \Delta $, $\displaystyle \int_\gamma {{{\left| {h'(z)} \right|}^2}\left| {dz} \right|} = \infty$ satisfies. At the same time, the specific analytical functions satisfying the above conditions were listed. Secondly, by selecting the appropriate Weierstrass representation pair and using the above conclusion, the hyperbolic complete minimal curved surface family and its specific form between two parallel planes in $ {\mathbb{R}^3} $ were constructed.
HTML   查看全文  查看/发表评论  下载PDF阅读器