用户登录
期刊信息
  • 主管单位:
  • 上海市教育委员会
  • 主办单位:
  • 上海理工大学
  • 主  编:
  • 庄松林
  • 地  址:
  • 上海市军工路516号
  • 邮政编码:
  • 200093
  • 联系电话:
  • 021-55277251
  • 电子邮件:
  • xbzrb@usst.edu.cn
  • 国际标准刊号:
  • 1007-6735
  • 国内统一刊号:
  • 31-1739/T
  • 邮发代号:
  • 4-401
  • 单  价:
  • 15.00
  • 定  价:
  • 90.00
蔡贤杰,丁德锐,魏国亮,武俊珂.融合多尺度特征和子空间注意力的黏膜下肿瘤检测[J].上海理工大学学报,2023,45(5):477-487.
融合多尺度特征和子空间注意力的黏膜下肿瘤检测
Detection method in submucosal tumor based on multi-scale feature and subspace attention fusion
投稿时间:2022-08-30  
DOI:10.13255/j.cnki.jusst.20220830001
中文关键词:  黏膜下肿瘤  计算机辅助检测  多尺度特征  上采样  子空间注意力
英文关键词:submucosal tumor  computer-aided detection  multi-scale feature  up sample  subspace attention
基金项目:国家自然科学基金资助项目 (61973219)
作者单位E-mail
蔡贤杰 上海理工大学 光电信息与计算机工程学院上海 200093  
丁德锐 上海理工大学 光电信息与计算机工程学院上海 200093 deruiding2010@usst.edu.cn 
魏国亮 上海理工大学 管理学院上海 200093  
武俊珂 上海理工大学 理学院上海 200093  
摘要点击次数: 105
全文下载次数: 90
中文摘要:
      计算机辅助检测工具可以帮助医生减少在临床检查中漏检误检的情况,从而提高诊断准确度,同时减轻医生的劳动强度。针对超声胃肠镜检查中黏膜下肿瘤的定位与分类问题,提出了一种融合多尺度特征和子空间注意力的黏膜下肿瘤检测算法(MFSA-YOLOv7t)。首先,移除小目标预测头,在保证精度下使网络轻量化;然后,基于浅层特征提出多尺度特征融合模块,提取肿瘤细节信息;其次,改进上采样结构,在保留上层信息的同时增强感受野;最后,引入子空间位置注意力模块,捕获肿瘤的位置和边界特征,进一步提升黏膜下肿瘤的检测性能。实验表明,MFSA-YOLOv7t在平均精度均值、敏感度以及准确度上分别达到97.32%,96.99%和96.24%,相比YOLOv7-tiny算法检测性能有较大的提升,分别提高了2.39%,2.75%和2.59%。MFSA-YOLOv7t为医生在临床检查中的辅助诊断提供更加可靠的肿瘤类型参考,同时为黏膜下肿瘤的检测提供了一个新的思路和研究方向。
英文摘要:
      Computer-aided detection tools can help doctors reduce the situations of missed and false detections in clinical examinations to improve diagnostic accuracy and reduce the labor intensity of doctors. Aiming at the problem of the localization and identification of submucosal tumors in ultrasound gastroscopy, a submucosal tumor detection algorithm combined with multi-scale feature and subspace attention (MFSA-YOLOv7t) was proposed. Firstly, the small target prediction head was removed to make the network lightweight while maintaining accuracy. Secondly, A multi-scale feature fusion module was proposed based on shallow features to aggregate details. Then, the algorithm improved the up-sampling structure to retain the upper layer information to the greatest extent and enhance the feature perception field. Finally, the coordinate subspace attention module was introduced to capture tumor location and boundary features to improve the detection performance of submucosal tumors. Experiments show that the mAP, sensitivity, and accuracy of MFSA-YOLOv7t reach 97.32%, 96.99%, and 96.24%, respectively, compared with YOLOv7-tiny, MFSA-YOLOv7t has a great improvement in detection performance, which is improved by 2.39%, 2.75%, and 2.59%, respectively. MFSA-YOLOv7t provides a more reliable reference of tumor type for doctors in clinical examination of the auxiliary diagnosis and also provides a new idea and a research direction for detecting submucosal tumors.
HTML   查看全文  查看/发表评论  下载PDF阅读器