﻿ 颗粒物质在竖直振动U形管中迁移的离散元方法模拟
 上海理工大学学报  2019, Vol. 41 Issue (5): 409-416 PDF

Discrete Element Method Simulation on the Immigration of Granular Matter in a Vertically Vibrating U-Tube
GUO Yu, FAN Fengxian, BAI Pengbo, LIU Ju
School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract: Using the discrete element method (DEM), three-dimensional numerical simulations were performed to investigate the immigration of granular matter in a vertical vibrating U-tube. The numerical simulation results were compared with the experiment ones and good agreement was found. On this basis, the effects of friction on the dynamical behavior of granular matter were examined. The results show that with the presence of friction, the granular immigration occurs, causing a difference between the granular column heights in the two branches of the U-tube, and the granular immigration is accompanied by granular convective phenomenon. When the friction coefficient between the particle and the tube wall is 0, the granular column heights difference fluctuates around 0, and similar granular convective phenomena appear in the two branches. When the friction coefficient among particles is 0, the granular column heights difference almost keeps 0 and the granular convective phenomena disappear. It is also found that the vertical average particle velocities in the two branches of the U-tube differ largely when frictions exist. Moreover, there are some consistency in between the vertical average velocities of particles in the two branches of the U-tube when either the friction coefficient between particles and the tube wall or the friction coefficient among particles is 0.
Key words: granular matter     vertical vibration     U-tube     immigration     discrete element method

1 DEM模型与数值计算方法 1.1 DEM模型

 ${m_i}\frac{{{\rm{d}}{{{v}}_i}}}{{{\rm{d}}t}} = {m_i}{{g}} + \sum\limits_{j = 1}^N {\left( {{{{F}}_{n,ij}} + {{{F}}_{t,ij}}} \right)}$ (1)
 ${I_i}\frac{{{\rm{d}}{{{\omega} }_i}}}{{{\rm{d}}t}} = \sum\limits_{j = 1}^N {\left( {{{{M}}_{t,ij}} + {{{M}}_{r,ij}}} \right)}$ (2)

 ${{{F}}_{n,ij}} = \min\; \left(0{\rm{,}} - \rho {\delta _{n,ij}}^{3/2} - \frac{3}{2}{A_n}\rho \sqrt {{\delta _{n,ij}}} {\dot \delta _{n,ij}}\right){{{e}}_n}$ (3)
 $\begin{split} &\quad{{{F}}_{t,ij}} = - \min\, \left[ {{\mu _s}\left| {{{{F}}_{n,ij}}} \right|{\rm{,}}\displaystyle\int\limits_{{\rm{path}}}\! {\dfrac{{4G}}{{2 - \upsilon }}\!\sqrt {{R_{\rm{eff}}}{\delta _{n,ij}}} {\rm{d}}s +}}\right.\\ &\qquad{{{A_t}\sqrt {{R_{\rm{eff}}}{\delta _{n,ij}}} {v_{t,ij}}} } ] {{{e}}_t} \end{split}$ (4)

 $\rho = \frac{{2Y}}{{3(1 - {\upsilon ^2})}}\sqrt {{R_{\rm{eff}}}}$ (5)

 ${{{M}}_{t,ij}} = {R_i}{{{e}}_n} \times {{{F}}_{t,ij}}$ (7)

 ${{{M}}_{r,ij}} = - {\mu _{\rm{r}}}\rho {\delta _{n,ij}}^{3/2}\frac{{{{{{\omega}} }_{ij}}}}{{\left| {{{{{\omega}} }_{ij}}} \right|}}{R_{\rm{eff}}}$ (8)

1.2 数值计算方法

 图 1 U形管示意图 Fig. 1 Schematic diagram of the U-tube

 图 2 施加振动前颗粒总动能随时间的变化关系 Fig. 2 Total kinetic energy of the particles as a function of time before applying vibration

 ${t_{\rm{c}}} \approx 3.21{\left( {{m_{\rm{eff}}}/\rho } \right)^{2/5}}{v_{\rm{imp}}}^{ - 1/5}$ (9)

2 结果与讨论 2.1 竖直振动U形管中颗粒物质的行为模式

 图 3 不同情况下竖直振动U形管中颗粒物质的行为模式 Fig. 3 Behavior modes of granular matter in the vertically vibrating U-tube under different conditions
2.2 竖直振动U形管中两分支颗粒柱高度差随时间的演变

 $\phi \left( z \right) = {N_{\rm{p}}}\left( z \right){V_{\rm{p}}}/{V_{\rm{c}}}$ (9)

 图 4 不同摩擦系数条件下U形管两分支颗粒柱高度及高度差随时间的变化关系 Fig. 4 Granular column heights in two branches of the U-tube and the height difference as a function of time under different friction coefficients
2.3 颗粒竖直方向平均速度分布

 $\left\langle {{v_z}} \right\rangle = \sum\limits_{i = 1}^{N'} {({{\bar v}_{zi}}{{N'}_{\rm{p}}}_i)} \left/\sum\limits_{i = 1}^{N'} {{{N'}_{{\rm{p}}i}}} \right.$ (10)

 图 5 不同摩擦系数条件下颗粒竖直方向平均速度随相对位置的变化关系 Fig. 5 Average vertical velocity of particles as a function of relative position under different friction coefficients
3 结　论

a. 利用基于DEM方法的三维数值模拟，再现了实验中得到的U形管两分支颗粒柱高度差随时间演变的历程，展现了颗粒的对流现象等颗粒尺度动力学信息。

b. 当颗粒与管壁间摩擦系数为0时，U形管两分支颗粒柱高度交替增减，两分支内颗粒对流现象类似；而当颗粒与颗粒间摩擦系数为0时，U形管两分支颗粒柱高度差几乎为0，颗粒对流现象消失。

c. 摩擦系数均不为0时，U形管两分支颗粒的竖直方向平均速度分布差异很大；当颗粒与管壁间或颗粒与颗粒间摩擦系数为0时，U形管两分支内颗粒的竖直方向平均速度存在一定的一致性。

 [1] 刘举, 白鹏博, 凡凤仙, 等. 竖直振动下颗粒物质的行为模式研究进展[J]. 化工进展, 2016, 35(7): 1956-1962. [2] RAJCHENBACH J. Dilatant process for convective motion in a sand heap[J]. Europhysics Letters, 1991, 16(2): 149-152. DOI:10.1209/0295-5075/16/2/005 [3] VAN GERNER H J, VAN DER HOEF M A, VAN DER MEER D, et al. Interplay of air and sand: Faraday heaping unravelled[J]. Physical Review E, 2007, 76(5): 051305. DOI:10.1103/PhysRevE.76.051305 [4] LEE J. Mechanism for surface waves in vibrated granular material[J]. Europhysics Letters, 1999, 47(4): 515-521. DOI:10.1209/epl/i1999-00418-8 [5] WI H S, KIM K, PAK H K. Pattern selection on granular layers under multiple frequency forcing[J]. Journal of the Korean Physical Society, 2001, 38(5): 573-576. [6] ROSATO A D, BLACKMORE D L, ZHANG N H, et al. A perspective on vibration-induced size segregation of granular materials[J]. Chemical Engineering Science, 2002, 57(2): 265-275. DOI:10.1016/S0009-2509(01)00380-3 [7] SCHRÖTER M, ULRICH S, KREFT J, et al. Mechanisms in the size segregation of a binary granular mixture[J]. Physical Review E, 2006, 74(1): 011307. DOI:10.1103/PhysRevE.74.011307 [8] CHEN W Z, WEI R J. A capillarity-like phenomenon in granular material under vertical vibration[J]. Physics Letters A, 1998, 244(5): 389-393. DOI:10.1016/S0375-9601(98)00316-8 [9] LIU C P, WU P, WANG L. Particle climbing along a vibrating tube: a vibrating tube that acts as a pump for lifting granular materials from a silo[J]. Soft Matter, 2013, 9(19): 4762-4766. DOI:10.1039/c3sm27955c [10] FAN F X, PARTELI E J R, PÖSCHEL T. Origin of granular capillarity revealed by particle-based simulations[J]. Physical Review Letters, 2017, 118(21): 218001. DOI:10.1103/PhysRevLett.118.218001 [11] OHTSUKI T, KINOSHITA D, NAKADA Y, et al. Surface level migration in vibrating beds of cohesionless granular materials[J]. Physical Review E, 1998, 58(6): 7650-7656. DOI:10.1103/PhysRevE.58.7650 [12] AKIYAMA T, SHINMURA K, MURAKAWA S, et al. A surface instability of granules under vibration in partitioned containers[J]. Granular Matter, 2001, 3(3): 177-183. DOI:10.1007/s100350100089 [13] KING P J, LOPEZ-ALCARAZ P, PACHECO-MARTINEZ H A, et al. Instabilities in vertically vibrated fluid-grain systems[J]. The European Physical Journal E, 2007, 22(3): 219-226. DOI:10.1140/epje/e2007-00001-6 [14] CLEMENT C P, PACHECO-MARTINEZ H A, SWIFT M R, et al. Partition instability in water-immersed granular systems[J]. Physical Review E, 2009, 80(1): 011311. DOI:10.1103/PhysRevE.80.011311 [15] SÁNCHEZ I, DARIAS J R, PAREDES R, et al. Vertical granular transport in a vibrated U-tube[C]//Proceedings of the Traffic and Granular Flow’07. Paris: Springer, 2009: 545-554. [16] DARIAS J R, SÁNCHEZ I, GUTIÉRREZ G. Experimental study on the vertical motion of grains in a vibrated U-tube[J]. Granular Matter, 2011, 13(1): 13-17. DOI:10.1007/s10035-010-0218-3 [17] PÉREZ B, SÁNCHEZ I. Effect of friction on the granular U-tube instability[J]. Mechanics Research Communications, 2011, 38(3): 244-248. DOI:10.1016/j.mechrescom.2011.02.014 [18] SÁNCHEZ I, DARIAS J R, MICHELANGELLI O P. Vibration induced granular flow through an elbow[C]//Proceedings of International Conference of Agricultural Engineering. Valencia: CIGR-EurAgEng, 2012. [19] DARIAS J, SÁNCHEZ I, GUTIÉRREZ G, et al. Study of the accumulation of grains in a two dimensional vibrated U-tube without interstitial fluid[J]. Advanced Powder Technology, 2013, 24(6): 1095-1099. DOI:10.1016/j.apt.2013.03.017 [20] SÁNCHEZ I, DÍAZ A A, GUERRERO B, et al. Improved model for the U-tube granular instability: analytical solution and delayed coupling[J]. Mechanics Research Communications, 2015, 67: 1-7. DOI:10.1016/j.mechrescom.2015.04.001 [21] GUTMAN R G. Vibrated beds of powders Part I: a theoretical model for the vibrated bed[J]. Transactions of the Institution of Chemical Engineers, 1976, 54: 174-183. [22] PÖSCHEL T, SCHWAGER T. Computational granular dynamics: models and algorithms[M]. Berlin: Springer, 2005. [23] KRUGGEL-EMDEN H, SIMSEK E, RICKELT S, et al. Review and extension of normal force models for the discrete element method[J]. Powder Technology, 2007, 171(3): 157-173. DOI:10.1016/j.powtec.2006.10.004 [24] KRUGGEL-EMDEN H, WIRTZ S, SCHERER V. A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior[J]. Chemical Engineering Science, 2008, 63(6): 1523-1541. DOI:10.1016/j.ces.2007.11.025 [25] BRILLIANTOV N V, SPAHN F, HERTZSCH J M, et al. Model for collisions in granular gases[J]. Physical Review E, 1996, 53(5): 5382-5392. DOI:10.1103/PhysRevE.53.5382 [26] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. DOI:10.1680/geot.1979.29.1.47 [27] MÜLLER P, PÖSCHEL T. Collision of viscoelastic spheres: compact expressions for the coefficient of normal restitution[J]. Physical Review E, 2011, 84(2): 021302. DOI:10.1103/PhysRevE.84.021302 [28] RYCROFT C H, ORPE A V, KUDROLLI A. Physical test of a particle simulation model in a sheared granular system[J]. Physical Review E, 2009, 80(3): 031305. DOI:10.1103/PhysRevE.80.031305 [29] PARTELI E J R, SCHMIDT J, BLÜMEL C, et al. Attractive particle interaction forces and packing density of fine glass powders[J]. Scientific Reports, 2014, 4: 6227. [30] AI J, CHEN J F, ROTTER J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3): 269-282. DOI:10.1016/j.powtec.2010.09.030 [31] KLOSS C, GONIVA C, HAGER A, et al. Models, algorithms and validation for opensource DEM and CFD-DEM[J]. Progress in Computational Fluid Dynamics, 2012, 12(2/3): 140-152. DOI:10.1504/PCFD.2012.047457 [32] GONDRET P, LANCE M, PETIT L. Bouncing motion of spherical particles in fluids[J]. Physics of Fluids, 2002, 14(2): 643-652. DOI:10.1063/1.1427920 [33] JOSEPH G G, ZENIT R, HUNT M L, et al. Particle-wall collisions in a viscous fluid[J]. Journal of Fluid Mechanics, 2001, 433(1): 329-346.