﻿ 花岗岩中深埋隧道扰动区应力测试与分析
 上海理工大学学报  2019, Vol. 41 Issue (5): 485-491 PDF

1. 上海大学 土木工程系，上海 200444;
2. 中设设计集团股份有限公司，南京 210014

Measurement and Analysis of Disturbed Zone Stress in Granite of a Deep Tunnel
SONG Zhipeng1, XU Jinming1, TU Qiliang2
1. Department of Civil Engineering, Shanghai University, Shanghai 200444, China;
2. China Design Group Co., Ltd., Nanjing 210014, China
Abstract: During the construction of a deep tunnel, the stresses in surrounding rocks will be redistributed due to the pushing of the tunnel wall while the stresses in wall rocks reach to a disturbed state. Therefore, it is quite important to determine the disturbed zone stress for the design and construction of the deep tunnel. After discussing the features of various techniques used in the measurement of disturbed zone stresses, the borehole measurement technique was used to determine the magnitude and the change with time of the disturbed field stresses in the granite of the deep tunnel. The technique for estimating the detected stable instant of disturbed zone stresses was then proposed by the use of the hyperbolic fitting method. The distribution features of the measured stable disturbed zone stresses in the horizontal and vertical directions were thereafter analyzed. The results show that compared with other methods, the borehole measurement technique is more quick, convenient and feasible, and especially suitable to measure disturbed field stresses in deep tunnels.
Key words: deep tunnel     disturbed zone stress     hyperbola     stable instant measuring

1 扰动区应力测试方法 1.1 扰动区应力现有测试方法简述

 图 1 测点位置示意图 Fig. 1 Diagram of measuring point positions

1.2 测量原理

 图 2 ZLGH型振弦式钻孔应力计 Fig. 2 ZLGH type of vibrating wire borehole stress sensor

 $f = \frac{1}{{2l}}\sqrt {\sigma /{\rho _1}}$ (1)

 $F = A\left( {f_1^2 - f_0^2} \right)$ (2)

 $F = A\left( {f_1^2 - f_0^2} \right) + B\left( {{f_1} - {f_0}} \right)$ (3)

1.3 测试过程

 图 3 传感器安装示意图 Fig. 3 Diagram of sensor's installation

2 扰动区应力测试稳定值的确定

 图 4 隧道断面图（单位：厘米） Fig. 4 Section chart of the tunnel （unit: cm）

 图 5 测点N1处扰动区应力随时间的变化曲线 Fig. 5 Disturbed zone stress varying with time at point N1

 图 6 测点N2处扰动区应力随时间变化曲线 Fig. 6 Disturbed zone stress varying with time at point N2

 $y = 20.71x/\left( {5.97 + x} \right)$ (4)

 $y = 11.33x/\left( {6.13 + x} \right)$ (5)

 图 7 测点N3处扰动区应力随时间的变化曲线 Fig. 7 Disturbed zone stress varying with time at point N3

 图 8 测点N4处扰动区应力随时间变化曲线 Fig. 8 Disturbed zone stress varying with time at point N4

3 扰动区应力的分布特征

 图 9 测点N1，N2，N5和N6的布置图 Fig. 9 Layout of four measure points N1, N2, N5 and N6

4 结　论

a. 与其他扰动区应力测试方法相比，钻孔式测试方法具有快捷实用、操作简单和可实施性强、对测试埋深无限制要求等方面的优点；

b. 所测隧道围岩变形主要发生在开始测试后的42 h以内，使用双曲线拟合法得到扰动区应力测试稳定时刻为54.04 h；

c. 所测隧道围岩中垂直和水平方向扰动区应力分别为20.04～20.71 MPa和11.33～11.83 MPa，垂直方向的扰动区应力是水平方向的169%～183%，扰动区应力以垂直应力为主。

 [1] 王洪德, 王爱军, 韩子夜. 监测工作在链子崖危岩体防治工程中的重要作用[J]. 中国地质灾害与防治学报, 2004, 15(S1): 101-104. [2] LU W B, YANG J H, YAN P, et al. Dynamic response of rock mass induced by the transient release of in-situ stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 129-141. DOI:10.1016/j.ijrmms.2012.05.001 [3] 李扬帆, 盛谦, 张勇慧, 等. 地下洞室开挖扰动区研究进展[J]. 地下空间与工程学报, 2013, 9(S2): 2083-2092. [4] 张向东, 李庆文, 李桂秀, 等. 采动影响下大跨度软岩巷道耦合支护效果分析[J]. 中国地质灾害与防治学报, 2014, 25(1): 70-76. [5] 朱泽奇, 盛谦, 周永强, 等. 隧洞围岩应力开挖扰动特征与规律研究[J]. 应用基础与工程科学学报, 2015, 23(2): 349-358. [6] 卢宏建, 梁鹏, 顾乃满, 等. 多次开挖扰动下采空区围岩应力演化数值模拟[J]. 矿产保护与利用, 2016(6): 17-20. [7] 徐连满, 潘一山, 李忠华, 等. 深部开采覆岩应力变化规律模拟实验研究[J]. 中国地质灾害与防治学报, 2011, 22(3): 61-66. DOI:10.3969/j.issn.1003-8035.2011.03.013 [8] 陈峰, 潘一山, 钟勇. 采动影响下覆岩应力变化规律的数值模拟分析[J]. 中国地质灾害与防治学报, 2014, 25(3): 74-78. [9] SHEN B, BARTON N. The disturbed zone around tunnels in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 117-125. DOI:10.1016/S1365-1609(97)80037-8 [10] 徐前卫, 程盼盼, 朱合华, 等. 软弱围岩隧道开挖应力扰动特征试验及数值模拟[J]. 现在隧道技术, 2016, 53(6): 154-164. [11] 蔡美峰. 地应力测量原理和方法的评述[J]. 岩石力学与工程学报, 1993, 12(3): 275-283. [12] CAI M F, QIAO L, LI C H, et al. Results of in situ stress measurements and their application to mining design at five Chinese metal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(3): 509-515. DOI:10.1016/S1365-1609(99)00077-5 [13] 宋广东, 刘统玉, 王昌. 基于采动应力监测的深部动力灾害预测技术[J]. 中国矿业, 2012, 21(S1): 520-522. [14] 周奎, 刘奕嫔, 余金鑫. 隧道开挖对近接既有人防工程影响的监测方法[J]. 上海理工大学学报, 2013, 35(1): 91-96. DOI:10.3969/j.issn.1007-6735.2013.01.019 [15] 欧阳振华, 蔡美峰, 李长洪. 北洺河铁矿地应力与采动应力测量[J]. 中国矿业, 2005, 14(12): 67-70. DOI:10.3969/j.issn.1004-4051.2005.12.020 [16] 张芳, 刘泉声, 张程远, 等. 流变应力恢复法地应力测试及装置[J]. 岩土力学, 2014, 35(5): 1506-1513. [17] 靳晓光, 王兰生, 李晓红. 地下工程围岩二次应力场的现场测试与监测[J]. 岩石力学与工程学报, 2002, 21(5): 651-653. DOI:10.3321/j.issn:1000-6915.2002.05.009 [18] 周辉, 渠成堃, 王竹春, 等. 深井巷道掘进围岩演化特征模拟与扰动应力场分析[J]. 岩石力学与工程学报, 2017, 36(8): 1821-1831. [19] GAO F Q, KANG H P. Effect of pre-tensioned rock bolts on stress redistribution around a roadway-insight from numerical modeling[J]. Journal of China University of Mining and Technology, 2008, 18(4): 509-515. DOI:10.1016/S1006-1266(08)60285-0 [20] 徐文全, 王恩元, 沈荣喜, 等. 采动应力监测传感装置及应用研究[J]. 采矿与安全工程学报, 2016, 33(6): 1123-1129, 1137. [21] WANG L G, SONG Y, HE X H, et al. Side abutment pressure distribution by field measurement[J]. Journal of China University of Mining and Technology, 2008, 18(4): 0527-0530. DOI:10.1016/S1006-1266(08)60288-6 [22] 白世伟, 韩昌瑞, 顾义磊, 等. 隧道应力扰动区地应力测试及反演研究[J]. 岩土力学, 2008, 29(11): 2887-2891. DOI:10.3969/j.issn.1000-7598.2008.11.001 [23] 邓铁六, 赵胜利, 赵振远, 等. 高准确度振弦式传感器研究[J]. 山东科技大学学报(自然科学版), 2010, 29(1): 52-57. DOI:10.3969/j.issn.1672-3767.2010.01.010