四阶方程出现在数学和物理的各个分支中。例如,它可以用来研究悬索桥的行进波问题[1-2]和弹性板在流体中的静态扰度问题。近年来,非线性双调和方程和p-双调和方程解的存在性问题被广泛研究[3-4]。关于多重调和问题,Pucci等[5]研究了多重调和算子的临界指数和临界维数。Pucci等[6]研究了多重调和问题在
2018年,文献[3]研究了带有临界指标和凹凸非线性项的p-双调和方程
$ \Delta _p^2u = \lambda f(x)|u{|^{q - 1}}u + |u{|^{{p^*} - 1}}u,\;\; x \in \varOmega $ | (1) |
其中,
2020年,文献[7]研究了带有Hardy项的p-双调和方程
$ \Delta _p^2u = \frac{{\mu |u{|^{r - 2}}u}}{{{{\left| x \right|}^s}}} + f(x,u),\;\;x \in \varOmega $ | (2) |
其中,
受文献[3, 7, 11]的启发,本文主要研究了临界p-双调和方程
$ \Delta _p^2u - \lambda \frac{{|u{|^{p - 2}}u}}{{{{\left| x \right|}^{2p}}}} + \mu V(x)|u{|^{q - 2}}u = |u{|^{{p^ * } - 2}}u,{\text{ }}x \in {\mathbb{R}^N} $ | (3) |
其中,
本文所研究的问题比文献[7]的问题更一般,因为,在
定义
根据p-双调和Hardy’s不等式[12]:
$ \int_{{\mathbb{R}^N}} {\frac{{{{\left| u \right|}^p}}}{{{{\left| x \right|}^{2p}}}}} dx \leqslant \frac{1}{{\bar \lambda }}\int_{{\mathbb{R}^N}} {{{\left| {\Delta u} \right|}^p}} {\rm{d}}x,{\text{ }}\bar \lambda = {\left( {\frac{{\left( {n - 2p} \right)(p - 1)n}}{{{p^2}}}} \right)^p} $ |
可以推出,对任意的
$ (u,v) = {\int_{{\mathbb{R}^N}} {\left| {\Delta u} \right|} ^{p - 2}}\Delta u\Delta v{\rm{d}}x - \lambda \int_{{\mathbb{R}^N}} {\frac{{{{\left| u \right|}^{p - 2}}uv}}{{{{\left| x \right|}^{2p}}}}} {\rm{d}}x $ |
$ \left\| u \right\| = {\left( {\int_{{\mathbb{R}^N}} \left({{\left| {\Delta u} \right|}^p} - \lambda \frac{{{{\left| u \right|}^p}}}{{{{\left| x \right|}^{2p}}}}\right){\rm{d}}x} \right)^{\frac{1}{p}}} $ |
用
$ S: = \inf\; \left\{ \int_{{\mathbb{R}^N}} \left({{\left| {\Delta u} \right|}^p} - \lambda \frac{{{{\left| u \right|}^p}}}{{{{\left| x \right|}^{2p}}}}\right){\rm{d}}x:{\text{ }}u \in W,{\text{ }}{\left\| u \right\|_{{p^ * }}} = 1\right\} $ |
根据文献[13]可知
$ \int_{{\mathbb{R}^N}} \left(|\Delta U{|^p} - \lambda \frac{{{{\left| U \right|}^p}}}{{{{\left| x \right|}^{2p}}}} \right){\rm{d}}x = \int_{{\mathbb{R}^N}} {|U{|^{{p^*}}}} {\rm{d}}x = {S^{\frac{N}{{2p}}}} $ |
定义函数
为了方便,当积分区域为
$ \begin{split}& {M_1} = \frac{2}{N} > 0,{\text{ }}{{{M}}_2} = \left(\frac{1}{p} - \frac{1}{q}\right)C\left( {\mathop {\max }\limits_{x \in \bar \Omega }\; V(x)} \right) > 0\\& \qquad G = {M_2}{\left( {\frac{{q{M_2}}}{{{p^*}{M_1}}}} \right)^{\frac{q}{{{p^*} - q}}}} > 0 \end{split}$ |
$\begin{split}& {\mu _1} = {\left( {\frac{{2{S^{\frac{N}{{2p}}}}}}{{NG}}} \right)^{\frac{{{p^*} - q}}{{{p^*}}}}} > 0\\&{\text{ }}{\mu _2} = {\left( {\frac{{{t_1}^q\int_\Omega {V(x)|U{|^q}} {\rm{d}}x}}{{qG}}} \right)^{\frac{{{p^*} - q}}{{{p^*}}}}} > 0 \end{split} $ |
本文研究问题(3)的弱解的存在性。对
$ I(u) = \frac{1}{p}\int_{} \left(|\Delta u| ^p - \lambda \frac{{{{\left| u \right|}^p}}}{{{{\left| x \right|}^{2p}}}}\right){\rm{d}}x + \frac{\mu }{q}{\int_{} {V(x)|u|} ^q}{\rm{d}}x - \frac{1}{{{p^ * }}}{\int_{} {|u|} ^{{p^ * }}}{\rm{d}}x$ |
很容易得到
$ \begin{split} \left\langle {I'(u),v} \right\rangle = &\int_{} \left({{\left| {\Delta u} \right|}^{p - 2}}\Delta u\Delta v - \lambda \frac{{{{\left| u \right|}^{p - 2}}uv}}{{{{\left| x \right|}^{2p}}}}\right){\rm{d}}x + \\&\mu {\int_{} {V(x)|u|} ^{q - 2}}uv{\rm{d}}x - {\int_{} {|u|} ^{{p^ * } - 2}}uv{\rm{d}}x \end{split} $ |
因为,问题(3)的所有解都是泛函
本文主要结果为定理1。
定理1 如果
首先验证山路引理的几何条件,得到引理1。
引理1 对
a. 存在常数
b. 存在
证明 a. 因为,
$ \begin{split} I(u) = & \frac{1}{p}\int_{} {\left(|\Delta u{|^p} - \lambda \frac{{{{\left| u \right|}^p}}}{{{{\left| x \right|}^{2p}}}}\right)} {\rm{d}}x + \frac{\mu }{q}\int_{} {V(x)|u{|^q}} {\rm{d}}x - \frac{1}{{{p^ * }}}\int_{} {|u{|^{{p^ * }}}} {\rm{d}}x \geqslant \\& \frac{1}{p}{\left\| u \right\|^p} + \frac{\mu }{q}\left( {\mathop {\min }\limits_{x \in \bar \varOmega } \; V(x)} \right)\int_{} {|u{|^q}} {\rm{d}}x - \frac{1}{{{p^ * }}}{S^{ - \frac{{{p^ * }}}{2}}}{\left\| u \right\|^{{p^ * }}}\geqslant \\& \frac{1}{p}{\left\| u \right\|^p} + \frac{\mu }{q}\left( {\mathop {\min }\limits_{x \in \bar \varOmega } \;V(x)} \right){C^{ - \frac{q}{2}}}{\left\| u \right\|^q} - \frac{1}{{{p^ * }}}{S^{ - \frac{{{p^ * }}}{2}}}{\left\| u \right\|^{{p^ * }}} \end{split} $ |
因为,
b. 取
$ \begin{split} I(tu) =& \frac{{{t^p}}}{p}\int_{} \left(|\Delta u{|^p} - \lambda \frac{{{{\left| u \right|}^p}}}{{{{\left| x \right|}^{2p}}}}\right){\rm{d}}x + \frac{{\mu {t^q}}}{q}\int_{} {V(x)|u{|^q}} {\rm{d}}x -\\& \frac{{{t^{{p^ * }}}}}{{{p^ * }}}\int_{} {|u{|^{{p^ * }}}}{\rm{d}}x \end{split}$ |
因为,当
通过引理1,结合山路引理[14],存在
$ I({u_n}) \to c,{\text{ }}I'({u_n}) \to 0,\;\; c = {\inf _{h \in \Gamma }}{\sup _{t \in [0,1]}}I\left( {h\left( t \right)} \right) $ |
$ \varGamma = \left\{ {h \in C\left( {[0,1],W} \right):{\text{ }}h(0) = 0,{\text{ }}h(1) = e} \right\} $ |
定理1 当
证明 假设
$ |I({u_n})| \leqslant M,{\text{ |}}I'({u_n}){u_n}| \leqslant M\left\| {{u_n}} \right\|$ |
则
$ \begin{split} M(1 + \left\| {{u_n}} \right\|) \geqslant & I({u_n}) - \frac{1}{q}I'({u_n}){u_n} = \left(\frac{1}{p} - \frac{1}{q}\right){\left\| {{u_n}} \right\|^p} + \\&\left(\frac{1}{q} - \frac{1}{{{p^ * }}}\right)\int_{} {|{u_n}{|^{{p^ * }}}} {\rm{d}}x \geqslant \left(\frac{1}{p} - \frac{1}{q}\right){\left\| {{u_n}} \right\|^p} \end{split}$ |
即
$ \begin{split}& |\Delta {{{u}}_n}{{\text{|}}^p}{\text{dx}} \rightharpoonup {\text{d}}\gamma \geqslant {\left| {\Delta {{u}}} \right|^p}dx + \sum\limits_{k \in J} {{\gamma _k}{\delta _{{x_k}}}} + {\gamma _0}{\delta _0}\\& |{{{u}}_n}{{\text{|}}^{{p^ * }}}{\text{dx}} \rightharpoonup {\text{d}}\nu = {\left| u \right|^{{p^ * }}}dx + \sum\limits_{k \in J} {{\nu _k}{\delta _{{x_k}}}} + {\nu _0}{\delta _0} \\& \frac{{\left|{u}_{n}\right|}^{p}}{{\left|x\right|}^{2p}}\text{dx}\rightharpoonup d\sigma =\frac{{\left|u\right|}^{p}}{{\left|x\right|}^{2p}}\text{dx+}{\sigma }_{0}{\delta }_{0} \end{split} $ | (4) |
其中,
$\begin{split}& \mathop {\lim }\limits_{n \to \infty } \int_{} {|\Delta {u_n}{|^{p - 2}}\Delta {u_n}} \Delta (\phi {u_n}){\rm{d}}x - \lambda \int_{} \phi {\rm{d}}\sigma {\text{ = }} \\&\qquad- \mu \int_{} {V(x)|u} {|^q}\phi {\rm{d}}x + \int_{} \phi {\rm{d}}\nu \end{split} $ | (5) |
因为,
$ \begin{split}& \int_{} {|\Delta {u_n}{|^{p - 2}}\Delta {u_n}\Delta (\phi {u_n})} {\rm{d}}x{\text{ = }}\int_{} {\Delta {u_n}{|^{p - 2}}\Delta {u_n}} \left( (\Delta \phi ){u_n} +\right.\\&\qquad \left.2\left\langle {\nabla \phi ,\nabla {u_n}} \right\rangle + \phi \Delta {u_n} \right){\rm{d}}x {{ = }}{\int_{} {\phi |\Delta {u_n}|} ^p}{\rm{d}}x + \\& \qquad \int_{} {|\Delta {u_n}{|^{p - 2}}\Delta } {u_n}\left( {2\left\langle {\nabla \phi ,\nabla {u_n}} \right\rangle + {u_n}\Delta \phi } \right){\rm{d}}x{\text{ }} \\[-5pt] \end{split} $ | (6) |
对式(6)在
$\begin{split}& \mathop {\lim }\limits_{n \to \infty } \int_{} {|\Delta {u_n}{|^{p - 2}}\Delta {u_n}\Delta (\phi {u_n})} {\rm{d}}x{\text{ = }}\int_{} {\phi {\rm{d}}\gamma } + \\&\qquad \mathop {\lim }\limits_{n \to \infty } \int_{} {|\Delta {u_n}{|^{p - 2}}\Delta } {u_n}\left( {2\left\langle {\nabla \phi ,\nabla {u_n}} \right\rangle + {u_n}\Delta \phi } \right){\rm{d}}x \\[-6pt] \end{split} $ | (7) |
现证
当
$\begin{split}& 0 \leqslant \mathop {\lim }\limits_{n \to \infty } \;\left| {\int_{} {|\Delta {u_n}{|^{p - 2}}\Delta {u_n}} \left\langle {\nabla \phi ,\nabla {u_n}} \right\rangle {\rm{d}}x} \right|\leqslant \\& \mathop {\lim }\limits_{n \to \infty } {\;\left({\int_{} {|\Delta {u_n}|} ^p}{\rm{d}}x\right)^{\frac{{p - 1}}{p}}}{\left(\int_{} {|\nabla \phi {|^p}|\nabla {u_n}{|^p}} {\rm{d}}x\right)^{\frac{1}{p}}} \leqslant \\& C\mathop {\lim }\limits_{n \to \infty } {\;\left(\int_{} {|\nabla \phi {|^p}|\nabla {u_n}{|^p}} {\rm{d}}x\right)^{\frac{1}{p}}} \leqslant \\& C{\left(\int_{\mathbb{R}^N} \cap B(0,2\varepsilon ) {|\nabla \phi {|^p}|\nabla u{|^p}} {\rm{d}}x\right)^{\frac{1}{p}}}\leqslant \\& {\text{ }} C{\left( \int_{\mathbb{R}^N} \cap B(0,2\varepsilon ) |\nabla \phi {|^N}{\rm{d}}x{)^{\frac{p}{N}}}\int_\mathbb{R}^N \cap B(0,2\varepsilon \right) {|\nabla u{|^{\frac{{Np}}{{N - p}}}}} {\rm{d}}x)^{\frac{{N - p}}{N}}} \leqslant \\& C\int_{B(0,2\varepsilon )} {|\nabla u} {|^{\frac{{Np}}{{N - p}}}}{\rm{d}}x{)^{\frac{{N - p}}{N}}} \to 0{\text{ }} \\[-15pt] \end{split} $ | (8) |
和
$ \begin{split} 0 \leqslant& \mathop {\lim }\limits_{n \to \infty } \;\left| {\int_{} {|\Delta {u_n}{|^{p - 2}}\Delta {u_n}} ({u_n}\Delta \phi ){\rm{d}}x} \right| \leqslant\\& {\lim _{n \to \infty }}{\int_{} {|\Delta {u_n}|} ^{p - 1}}|{u_n}||\Delta \phi |{\rm{d}}x \leqslant \\& \mathop {\lim }\limits_{n \to \infty } {\;\left(\int_{} {|\Delta {u_n}{|^p}} {\rm{d}}x\right)^{\frac{{p - 1}}{p}}}{\left(\int_{} {|{u_n}{|^p}|\Delta \phi {|^p}} {\rm{d}}x\right)^{\frac{1}{p}}}\leqslant \\& {{C}}{\left(\int_{{\mathbb{R}^N} \cap B(0,2\varepsilon )} {|\Delta \phi {|^{\frac{N}{2}}}} {\rm{d}}x\right)^{\frac{{2p}}{N}}}{\left(\int_{{\mathbb{R}^N} \cap B(0,2\varepsilon )} {|u{|^{{p^ * }}}} {\rm{d}}x\right)^{\frac{1}{{{p^ * }}}}} \leqslant \\& {\text{ }} {{C}}\left(\int_{B(0,2\varepsilon )} {|\Delta u{|^{{p^*}}}} {\rm{d}}x\right)^{\frac{1}{{{p^*}}}} \to 0\\[-12pt] \end{split} $ | (9) |
结合式(5)~(9),有
$ \begin{split} 0{\text{ = }}& \mathop {\lim }\limits_{\varepsilon \to 0} \left\{ - \int {\lambda \phi {\rm{d}}\sigma } + \int_{} {\phi {\rm{d}}\gamma } + \mu \int_{} {V(x)|u{|^q}{\rm{d}}x - \int_{} {\phi {\rm{d}}\nu } } \right\} \geqslant\\& - \lambda {\sigma _0} + {\gamma _0} - {\nu _0} \end{split} $ |
应用集中紧性原理[14],有
由
$\begin{split} {c}=&\underset{n\to \infty }{\mathrm{lim}}\;I({u}_{n})=\underset{n\to \infty }{\mathrm{lim}}\;\left(I({u}_{n})-\frac{1}{p}\langle {I}^{\prime }({u}_{n}),{u}_{n}\rangle \right)=\\ &\underset{n\to \infty }{\mathrm{lim}}\left(\left(\frac{1}{q}-\frac{1}{p}\right)\mu {\displaystyle {\int }_{}V(x)|{u}_{n}{|}^{q}{\rm{d}}x+\left(\frac{1}{p}-\frac{1}{{p}^{\ast }}\right)}{{\displaystyle {\int }_{}\left|{u}_{n}\right|}}^{{p}^{\ast }}{\rm{d}}x\right)=\\ &\left(\frac{1}{q}-\frac{1}{p}\right)\mu {\displaystyle {\int }_{}V(x)|{u}_{n}{|}^{q}{\rm{d}}x+\underset{n\to \infty }{\mathrm{lim}}\left(\frac{1}{p}-\frac{1}{{p}^{\ast }}\right)}{{\displaystyle {\int }_{}\left|{u}_{n}\right|}}^{{p}^{\ast }}{\rm{d}}x\geqslant\\& \left(\frac{1}{q}-\frac{1}{p}\right)\mu {\displaystyle {\int }_{}V(x)|u{|}^{q}{\rm{d}}x+\left(\frac{1}{p}-\frac{1}{{p}^{\ast }}\right)}\left({\displaystyle {\int }_{}|u{|}^{{p}^{\ast }}{\rm{d}}x+{\nu }_{0}}\right)\geqslant\\ & \left(\frac{1}{q}-\frac{1}{p}\right)\mu C\left(\underset{x\in \overline{\varOmega }}{\mathrm{max}}V(x)\right)\left(\displaystyle {\int }_{}|u{|}^{{p}^{\ast }}{\rm{d}}x\right)^{\frac{q}{{p}^{\ast }}}+\\ &\frac{2}{N}{\displaystyle {\int }_{}|u{|}^{{p}^{\ast }}{\rm{d}}x+\frac{2}{N}{S}^{\frac{N}{2p}}} \end{split} $ |
其中,
$ {M}_{1}\text=\frac{2}{N}\text{,}\text{ }{M}_{2}=\left(\frac{1}{p}-\frac{1}{q}\right)C\left(\underset{x\in \overline{\varOmega }}{\mathrm{max}}\;V(x)\right) $ |
由
$ {M_3}{\text{ = }}{M_1}{\left(\frac{{q{M_2}\mu }}{{{p^*}{M_1}}}\right)^{\frac{{{p^*}}}{{{p^*} - q}}}}\text{,}{M_4}{\text{ = }}{M_2}{\left(\frac{{q{M_2}\mu }}{{{p^*}{M_1}}}\right)^{\frac{q}{{{p^*} - q}}}} $ |
因此,可得
$\begin{split} & c \geqslant \frac{2}{N}{S^{\frac{N}{{2p}}}}{\text{ + }}{M_3} - \mu {M_4} = \frac{2}{N}{S^{\frac{N}{{2p}}}} - {\mu ^{\frac{{{p^*}}}{{{p^*} - q}}}}G\\&G = {M_2}{\left(\frac{{q{M_2}}}{{{p^*}{M_1}}}\right)^{\frac{q}{{{p^*} - q}}}} \end{split}$ |
与条件矛盾。故当
$ \begin{split} o(1) = &\left\langle {I'({u_n}) - I'(u),{u_n} - u} \right\rangle {\text{ = }}\\ & \int_{} {\left( {|\Delta {u_n}{|^{p - 2}}{u_n} - |\Delta u{|^{p - 2}}u} \right)} \left( {{u_n} - u} \right){\rm{d}}x +\\ & \mu \int_{} {V(x)} (|{u_n}{|^{q - 2}}{u_n} - |u{|^{q - 2}}u)({u_n} - u){\rm{d}}x - \\ & \int_{} ( |{u_n}{|^{{p^*} - 2}}{u_n} - |u{|^{{p^*} - 2}}u)({u_n} - u){\rm{d}}x\geqslant \\ & {{C}}{\left\| {{u_n} - u} \right\|^p} + o(1) \end{split}$ |
故在
定理2 当
证明 对任意的
定义函数
$ h(t) = \frac{1}{p}{t^p}{\left\| U \right\|^p} - \frac{{{t^{{p^*}}}}}{{{p^*}}}\int_{} {|U{|^{{p^*}}}} {\rm{d}}x = :{C_1}{t^p} - {C_2}{t^{{p^*}}},\;\;t \geqslant 0$ |
其中,
$ \begin{split} I(tu) =& h(t) - \frac{{\mu {t^q}}}{q}\int_{} V(x)|U{|^q}{\rm{d}}x \leqslant \\& \frac{2}{N} {S^{\frac{N}{{2p}}}} - \frac{{\mu {t^q}}}{q}\int_{} {V(x} )|U{|^q}{\rm{d}}x \end{split}$ | (10) |
因为,
$ \mathop {\max }\limits_{0 \leqslant t \leqslant {t_1}}\; I(tu) < \frac{2}{N}{S^{\frac{N}{{2p}}}} - {\mu ^{\frac{{{p^*}}}{{{p^*} - q}}}}G$ |
另一方面,由式(10)可知,
$ \mathop {\max }\limits_{t > {t_1}} \;I(tu) \leqslant \frac{2}{N}{S^{\frac{N}{{2p}}}} - \frac{{\mu {t_1}^q}}{q}\int_{} {V(x} )|U{|^q}{\rm{d}}x $ |
即对任意的
综上,取
根据山路水平
通过以上定理和引理,可知当
[1] |
CHEN Y, MCKENNA P J. Traveling waves in a nonlinearly suspended beam: theoretical results and numerical observations[J]. Journal of Differential Equations, 1997, 136(2): 325-355. DOI:10.1006/jdeq.1996.3155 |
[2] |
LAZER A C, MCKENNA P J. Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis[J]. SIAM Review, 1990, 32(4): 537-578. DOI:10.1137/1032120 |
[3] |
BUENO H, PAES-LEME L, RODRIGUES H. Multiplicity of solutions for p-biharmonic problems with critical growth
[J]. Rocky Mountain Journal of Mathematics, 2018, 48(2): 425-442. |
[4] |
BENEDIKT J, DRÁBEK P. Estimates of the principal eigenvalue of the p-biharmonic operator
[J]. Nonlinear Analysis:Theory, Methods & Applications, 2012, 75(13): 5374-5379. |
[5] |
PUCCI P, SERRI J. Critical exponents and critical dimensions for polyharmonic operators[J]. Journal de Mathématiques Pures et Appliqués, 1990, 69(1): 55-83. |
[6] |
PUCCI P, RӐDULESCU V. Remarks on a polyharmonic eigenvalue problem[J]. Comptes Rendus Mathematique, 2010, 348(3/4): 161-164. |
[7] |
WANG W H. p-biharmonic equation with Hardy-Sobolev exponent and without the Ambrosetti-Rabinowitz condition
[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2020(42): 1-16. |
[8] |
任艳. 具有临界指数的两类调和方程解的存在性[D]. 太原: 中北大学, 2019.
|
[9] |
YANG R R, ZHANG W, LIU X Q. Sign-changing solutions for p-biharmonic equations with Hardy potential in
|
[10] |
HUANG Y S, LIU X Q. Sign-changing solutions for p-biharmonic equations with Hardy potential
[J]. Journal of Mathematical Analysis and Applications, 2014, 412(1): 142-154. DOI:10.1016/j.jmaa.2013.10.044 |
[11] |
JI C, WANG W H. On the p-biharmonic equation involving concave-convex nonlinearities and sign-changing weight function
[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2012(2): 1-17. |
[12] |
DAVIES E B, HINZ A M. Explicit constants for Rellich inequalities in Lp(Ω)
[J]. Mathematische Zeitschrift, 1998, 227(3): 511-523. DOI:10.1007/PL00004389 |
[13] |
BHAKTA M, MUSINA R. Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials[J]. Nonlinear Analysis:Theory, Methods & Applications, 2012, 75(9): 3836-3848. |
[14] |
STRUWE M. Variational methods: Applications to nonlinear partial differential equations and hamiltonian systems[M]. 4th ed. Berlin, Heidelberg: Springer-Verlag, 2008.
|
[15] |
HAN Q. Compact Sobolev embeddings and positive solutions to a quasilinear equation with mixed nonlinearities[J]. Journal of Mathematical Analysis and Applications, 2020, 481(2): 123150. DOI:10.1016/j.jmaa.2019.04.062 |