空间解析单细胞转录组的优化算法研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目 (61807017)


Research on the optimization algorithm for spatially resolved single-cell transcriptomes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    由于单细胞和空间转录组技术都存在一定的不足,整合单细胞转录组和空间转录组技术应运而生。为提高单细胞矩阵到空间矩阵映射的相似度,降低损失函数值,通过改进深度学习Tangram算法的目标函数,同时受龙格库塔方法的启发对优化算法Adam的梯度值进行修正,开发了RK-Tangram算法。将其应用到3组模拟数据与真实的小鼠大脑皮质、运动和视觉区域的数据上,与原始Tangram算法相比,结果表明,RK-Tangram算法不仅提高了映射的相似度,降低了损失函数值,而且扩展了空间转录组的全基因组图谱,并纠正了低质量的空间测量。另外,通过解卷积将空间转录组数据转化为单细胞数据,提供了一个更高分辨率的组织类型图谱。

    Abstract:

    As both single-cell and spatial transcriptome techniques have certain shortcomings, techniques integrating single-cell transcriptome and spatial transcriptome were developed. In order to improve the similarity of mapping single-cell matrix to spatial matrix and reduce the loss function value, the RK-Tangram algorithm was developed by improving the objective function of the Tangram algorithm for deep learning and also correcting the gradient value of the optimization algorithm Adam, inspired by the Runge-Kutta method. Applying it to three sets of simulated data and real data from mouse brain cortical, motor and visual regions, compared with the original Tangram algorithm, the results showed that the RK-Tangram algorithm not only improved the similarity of the mapping and reduced the loss function value, but also extended the genome-wide mapping of the spatial transcriptome and corrected spatial measurements with low-quality. In addition, deconvoluting the spatial transcriptome’s data to single cell’s provided a higher resolution mapping of tissue types.

    参考文献
    相似文献
    引证文献
引用本文

皇站飞,赵桂华.空间解析单细胞转录组的优化算法研究[J].上海理工大学学报,2024,46(6):698-707.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-08-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-12-28