摘要:
为了应对人口老龄化带来的挑战,并使洗浴机器人能够针对不同皮肤部位采用适当的洗浴模式,对多部位皮肤检测及其在洗浴机器人中的应用进行了研究。在前期研究的基础上,选取了4种典型目标检测算法,扩充了原始数据集,并基于迁移学习进行多部位皮肤检测。建立了综合评价指标以评估算法性能,在Tesla T4和TX2平台上对性能最佳的模型进行部署和测试,并将其应用于洗浴机器人中。结果显示:数据集类不平衡的改善可使检测精度平均提升18%;YOLOv5s算法在精度与模型大小之间达到了最佳平衡,能够在Tesla T4和TX2平台上进行实时检测,并在水汽环境中实现对不同部位皮肤的识别。通过TX2平台集成视觉传感器,进行目标点三维位姿建模和联合实验,控制机器人到达背部区域的成功率为92%,使用点云作为监督信息可将此成功率提升至100%。改善类不平衡可以显著提升多部位皮肤检测的准确性,YOLOv5s在平衡精度和模型大小方面表现出色,有效满足了洗浴机器人多部位皮肤检测的需求。